
EDUCATIONAL SOFTWARE
SIMULATION OF CHARGED PARTICLE TRAJECTORIES IN PRESENCE

OF MAGNETIC FIELDS

F. Calvino and C. Martinez, Eng. Nuclear ETSEIB-UPC, 08028-Barcelona, Spain

Abstract

A MS-Windows based program for learning about
charged particle trajectories in presence of magnetic
fields is presented. After a brief introduction, a program
overview is given and the numerical resolution of the
differential equations of motion is discussed. Following
the program options are described. Finally a set of
hardcopies showing some examples of particle
trajectories, both in real and phase space, are presented.

1  INTRODUCTION
An example of a non-linear system are the equations

of motion of a charged particle in a multipolar magnetic
field. It is possible to find an aproximate solution for the
first order in the multipole expansion, but numerical
methods are necessary to find a solution for higher order
expansions.

The first order aproximation can be solved by means
of a matrix formalism or alternatively by transforming
the equations of motion to look like an harmonic
oscillator problem.

2  PROGRAM OVERVIEW
The program computes and graphically displays the

trajectories (both in phase and real spaces) of charged
particles when passing through a cell, i.e. a sequence of
drift spaces and magnets (from dipoles up to octupoles,
in each case upright or skew). This is done by solving
the equations of motion by means of numerical methods.
There is the possibility also of using transport matrix to
obtain the different parameters of a cell (beta function,
dispersion, emittance, …).

The purpose of the program is mainly didactic. It
gives the possibility of experimenting with the
parameters on which the trajectory of the particle
depends. Any change of these parameters will be
reflected, after a short computing time, in the graphical
display of the trajectories.

The user starts by defining the basic cell. At this
point, the position, length and field strength of each
element have to be provided. Then, the particle type and
initial conditions need to be given. Using this

information the particle's trajectories are computed and
the results displayed on the screen.

3  EQUATIONS OF MOTION
The differential equations of motion are derived

using a cartesian co-ordinate system. A left handed
reference frame is used, where the symbols x  and y

stay for the transverse axis and s  for the longitudinal
one.

In this co-ordinate system we can write the third
order multipole field expansion (1) (including only
upright elements) as  [1,2]
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Using (1) one immediately finds out
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Equation (3) allows the computation of the particle

trajectory at any time, provided that the initial position
and velocity and the gradient are known.



From (3) can also be obtained, in linear
approximation, two second order differential equations
that by a proper transformation of variables can be
express in the form of the equations for a harmonic
oscillator.
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A matrix formalism can be used to solve the linear
approximation.

4  INTEGRATION METHOD

4.1 Description

The equations of motion are solved by means of the
embedded fifth order Runge-Kutta method with adaptive
stepsize [3,4].

The first step is to transform the second order
differential equations of motion in a set of equivalent
first order differential equations & ( )y f xi i i= . This is

achieved using an appropriate change of variables, in
this case. In this way a system of 6 first order differential
equations is obtained

For a first order differential equation of the type
dy
dx

f x y= ( , ) the general form of a fifth-order Runge-

Kutta formula is
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Using a different set of parameters and embedded
fourth-order formula can be obtained
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 The values of the various constants that are used
( a b ci i j i, ,, ) are those found by Cash and Karp.

4.2  Mechanism of control

Now that it is known, approximately, the error made
in the calculation a relation should be found between h
and ∆ . Taking into account that the error scales as h5 ,
an estimation can be made to obtain the step h0  that

would have given an error ∆ 0  knowing that a step h1

produced an error ∆1
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If ∆ 0  is the desired accuracy the equation tells in case

the error is larger than the desired accuracy, how much
to decrease (an repeat the failed step) or in case it is
smaller how much to increase the next step.

5  PROGRAM DESCRIPTION
The program has been divided into a dynamic link

library written in C, where all the numerical
computations are carried on, and a graphical user
interface written in Visual Basic.

The program is menu based, so that the user should
not need to learn any special command.

In the first menu the user is prompted for the initial
conditions of the particle. The sequence of magnets the
particle will go through, the cell, has to be given too.
The user can build cells and save them in a file disk for
later use.

If the user has to build a cell, a set of windows will
help him with the task.

Once the computation is finished a menu will be
showed with different option for plotting the trajectories
in real and phase space, either for the x or for the y
plane.

6  RESULTS
We present here some results obtained from the

program previously described.
As an example we have use the following cell definition:

DS1: Ld,1 = 1.335 m [drift section]
DS2: Ld,2 = 45.535833632 m [drift section]
Q1 : Lq,f = 3.05 m [quadrupole]

Gq,f = 8.402938·10-3 m-2

Q2 : Lq,d = 3.05 m [quadrupole]
Gq,d = -1.05804·10-2 m-2

S1  : Ls,1 = 1.1 m [sextupole]
G's,1 = 9.1·10-3 m-3



S2  : Ls,2 = 1.1 m [sextupole]
G's,2 = 2.1·10-2 m-3

The cell geometry is as follows:

Q1-DS1-S1-DS2-Q2-DS1-S2-DS2

In fig.1 we present the real space trajectory of a
single proton, passing 30 times through the cell. The
initial conditions were:

Energy  : E =  7.5 TeV
Position: x = 10-3 m

y = 10-3 m
Angular dispersion: θ = 0º

ϕ = 0º

In fig.2 we have included the phase space trajectories
for 6 protons at the end of the first quadrupoles. All the
particles had the same energy and initial position.

Energy : E = 7.5 TeV
Position : x = 10-3 m

y = 10-3 m

The different initial angles are included in the figure.

Fig.  1

7  CONCLUSIONS
We have presented a MS-Windows based software

that allows the user to experiment with the parameters
related with the particle’s trajectories in an accelerator.
The program has ben developed to offer user-friendly
menus and graphical display. Further development will
be needed to offer the user an on-line help.
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