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Abstract

This paper presents a finite element method for calculating
resonant frequenciesfor an arbitrary three dimensional cav-
ity. Firstly traditional nodal methods are considered and the
reason for their failurein modelling high frequency fields.
An edge eement formulation and its solution of the prob-
lems of spurious modes and modeling of reentrant corners
ispresented. Withtheaid of two realistic cavity designsthe
strengths of the finite element approach isillustrated.

1 TRADITIONAL METHODS

Theuse of finiteelement analysisiswidespread throughout
the spectrum of engineering disciplines. Indeed its usein
the design of dectrical equipment goes back to the very in-
ception of the method. However, until recently, the analy-
sis of high frequency devices such as resonant cavities has
been beyond their reach. Traditional approaches have been
plagued by “spurious’, i.e. nonphysical, modes and the in-
ability to model singularities adequately. The background
theory and the reasonsfor these difficultiesare discussed be-
low.

1.1 Background Theory

For simplicity it can be assumed that the cavity contains
no charges or currents and the walls are made from per-
fectly eectrically conducting (PEC) materia. The funda
mental equation describing the electric field is the vector
wave equation:

v, (G, () = -0
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with the following condition holding PEC boundaries
E-t=0 on 'pec (2

Further assuming all materials within the cavity are linear,
(2) reduces to the vector Helmholtz equation for each indi-
vidua mode n,

V, (V. Blx)) - sl B(x) =0 ®

Inalocal volumeof spaceitisaways possibleto decompose
avector field into rotational and irrotational components,

E(x) = V,v(x) + Vé(x) (4)

where v(x) and ¢(x) are arbitrary vector and scalar fields
respectively. Thesecond termisfamiliar from el ectrostatics
where it iscommon to solve the potential problem,

V- eVe(x) = p(x) ©)

and from ¢ determine E. Any dectrostatic solution may
beformally considered to be atime harmonic solution with
zero resonant frequency. Indeed the solutionsto (3) fall into
two categories,
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The dynamic relation (3) contains a subset of zero eigen-
frequency sol utionscorresponding to el ectrostatic problems
with arbitrary sources. These are the " spurious’ modes.

The traditional method for representing a vector field in
finite lementsisto expand each of itscomponentsin terms
of nodal scalar shape functions V;(x),

E(x) = E ep Np(x) (7)

nodesp

E(x) = { (6)

where e, are the vector unknowns at each node. The
Galerkin method then leads to the following functiona
equation for E(x),

/QVAW(x) (V. E(x)) — ew? W(x).E(x)dQ = 0.
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where W isatrial vector field of form (7). Performing the
integrals leaves a sparse generalised elgenval ue problem,

Ae=w’Be (9

for which standard methods of solution exist [1]. Unfortu-
nately the resulting spectrum of solutionsobtained is atan-
gleof spuriousand physica modes. Although examination
of the modes cal culated may be made, discarding thosewith
“significant” valuesof V - E, thisis hardly satisfactory.

Thisdiscrepancy between the continuum prediction of (6)
and the discrete implementation is due to an inappropriate
choice of basis functions. The problem is that noda basis
vectors cannot exactly represent fields of theform V¢. This
is evident from the discontinuity of V¢ crossing element
boundaries whereas W (x) iscontinuouseverywhere. Asa
result the zero frequency continuum solutions aquire mesh
and problem dependent frequencies, typically comparable
to the physical modes of the device.



The use of E as the state variable in traditiona e ectro-
magnetic finite elements has always been problematic be-
cause it isdiscontinuousbetween media of differing dielec-
tric properties. Alternatively the problem may be described
intermsof theunderlyingpotentials A and ¢ which are con-
tinuous. Choosing the Lorentz gauge the problem may be
reformulated as,

V2A(x) — pew?A(x) = 0 (20)
with the boundary condition for A analogousto (2). The
“spurious’ modes in this approach are then removed by the
boundary conditions.

Unfortunately for problems with reentrant corners, and
thereforesingular fields, methodsof thistypearefoundtobe
significantly in error [2]. Even for modelswhere (2) is self
evident they do not even converge to the correct solution. It
isonly by using singular expansion functions around reen-
trant cornersthat the correct results are recovered [3]. For
this approach to be generally applicable it would be neces-
sary to determinethe asymptotic solution of thefield around
arbitrary junctions of thistype. Thankfully thereisamore
elegant solution to this problem which is presented in the
following section.

2 EDGE ELEMENTS

As shown, the combination of discrete meshes and vector
componentsisnot acomfortablematch. Edgeelementsside
step thewhol e question of components by only dealing with
well defined scalar quantities. In this approach the degrees
of freedom associated with E are not its components but the
emf jump between connected nodes. The emf ey;;, is de-

fined as,
€y} = /
I

where: and 5 aretwo nodesin themesh and/,;, isthedi-
rected edge connecting them. Thisisthe origin of the term
“edge” in edge elements. In some respects this approach
is very similar to the method of Yee [4] in Finite Differ-
ence Time Domain, although thismethod is more rooted in
the abstract field of differential geometry [5]. The electric
field is represented by an expansion in vector shape func-

tionsw,,., associated with each edge in the mesh,

(i4)
E(x) = D ey Wiy

edges
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The most well known edge element isthe Whitney tetra-
hedral element. The vector shape function associated with
edgel,,, is,

ij}

W

iy (%) = A(x) VA (x) — A (x) VA(x) (13)

wherethe A;(x) are thebarycentric coordinates of x. These
basis vectors have many specia properties but one of the
most important isthe following:

VAi(x) = wyijy (x) + wisry (x) + wian (x) (14)

where the nodes s, j, k and [ form the terathedra enclosing
the point x. Thisisthe property that resolves the problem
associated with* spurious’ modesfound in traditional meth-
ods. Modeling ascalar field using the standard nodal shape
functions, A, the gradient of this field can be exactly rep-
resented as a linear combination of edge vectorswy, . The
“spurious’ modes still exist if edge variables are used but
they can be exactly represented interms of edge vectors and
therefore do not acquire non-zero eigenfrequencies. Conse-
guently physical and spurious spectra are completely sepa-
rated.

Another advantage is that the boundary condition (2) is
completely natural. The coefficients ey;;, for edges lying
inthe PEC wall are smply set to zero. Thevauesfor edges
touching areentrant corner are no different from any other
and their values are determined by the solution. Also being
related to the emf jump their values are strictly finite.

3 CAVITY EXAMPLES

To test this method a simple rotationally symmetric cavity,
see Figure 1, has been analysed and compared to the 2D fi-
nite difference program URMEL-T and experiment at the
Daresbury laboratory [6]. The harmonicsof thissystem and
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Figure 1: Quarter section of RF cavity givenin[6].

coupling to the main beam line are required. Contrary to fi-
nite difference methods the mesh density may be varied ar-
bitrarily in three dimensions and in this exampleit is quite
important to do so. There are two considerations when do-
ing this:

o Accuratefield valuesin the beam tubeto calculate the
coupling of each harmonic to the beam

e Accurately modelling the field variation, possibly sin-
gular, of the harmonics themselves.



Therefore the mesh in the beam tube and reentrant sections
have been graded finely and then progressively coarsened
into the homogeneous chamber volumes.

For devices operating at these frequencies the skin depth
of thereal conducting wallsisso small that they may bere-
placed with PEC boundaries. For this model the resonant
frequenciesin MHz are:

Mode Experimental SopranoEV URMEL-T

Zero 12512 125.54 124.66
L 541.79 546.82 544.31
L 728.48 730.9 725.24

The column labelled SopranoEV is the implementation of
the edge method and URMEL-T is the standard 2D finite
difference code. These are dl longitudinal (L) modes.

A truethree dimensiona RF cavity, a section of whichis
shown in Figure 2, has al so been modelled [7]. It comprises
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Figure 2: One sixteenth section of CEA RF cavity.

ova chamberslinked by the beam pipe and four symmetri-
cally placed ports. A similar discretisation stategy was used.
Theaim of thisexercise wasto determinethe effect of these
ports. Below are presented the main quantities of interest,
including the geometric shunt impedance g:

Mode || Freg. (MHz) Q g(Q)
No Ports || 361.40 36876 147.2
Zero 356.35 41199 150.5
-1.4% +12% +2.2%
Fio 352.0 35677 155.0
-2.6% -3.3% +5.3%
Expected || 1-2% 5-20% 2-5%

Thefina row containsthe perturbations expected by CEA.

4 CONCLUSIONS

The use of Edge eements has removed the problems as-
sociated with “ spurious’ modes and reentrant corners, that
rendered traditional methods unviable. This new approach
brings with it all the flexibility associated with finite ele-
ments and has shown consistently good resultsfor real prob-
lems. The extension of this method to lossy material and
complex eigenfrequency determination is straightforward
and ongoing.
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