
THE NEW BNL AGS PHASE, RADIAL AND SYNCHRONIZTION LOOPS *

E.  ONILLON, J. M. BRENNAN, Brookhaven National Laboratory,
AGS Department, Upton, NY 11973, USA

                                                       
* Work performed under the auspices of the U.S. Department of Energy.

1. INTRODUCTION

The AGS and the RHIC must be synchronized
before bunch-to-bucket transfer of the beam. A feedback
loop has been designed and an improvement has been
made to the AGS phase and radial loops. In both cases,
the design uses a state variable representation to achieve
greater stability and smaller errors. The state variables
are beam phase, frequency and radius, the integral of the
difference between the radius and its reference and the
phase deviation of the bunch from the synchronous
phase. Furthermore, the feedback gains are programmed
as a function of the beam parameters to keep the same
loop performances through the acceleration cycle.

2. DESCRIPTION OF THE LOOPS

2.1 Variables and transfer functions

The main variables used to describe the system are:

- ϕb the phase of the beam with respect to the RF

- ϕ the instantaneous phase deviation of the bunch
from the synchronous phase

- δωb the variations of the beam frequency

- δR the variations of the beam radius
- ϕs the synchronous phase

- E the total energy
- Vrf the accelerating voltage

- ϕrf the RF phase

- ωrf the RF frequency

- f∞ the asymptotic revolution frequency

- ξ the beam damping coefficient (all the calculations
have been performed with ξ = 0 01. ).

The cavity, around which an RF feedback is closed,
can be described by its pole sc.

These variables are related by the three following

transfer functions (Fig. 1) [1]: 
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Fig. 1 Model of the system

2.2  The phase and radial loop

In a first approximation, we presume that the cavity
transfer function is one, the beam damping term ξ is
zero, and the delays of the system are neglected. The
corresponding subsystem is a on Fig.1.

It can be described using two state variables
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. A third one, corresponding to

the integral of the difference of the radius and its
reference, is introduced to force the radius to follow its

reference R0: ( )x z R R dt3 0= = −∫ . These state

variables lead to the following state space representation:
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All three state variables are observed.
As the rank of the matrix

[ ]B B BR R R R Rϕ ϕ ϕ ϕ ϕ A  A 2  is 3, it is possible to

determine a feedback using pole placement [2].
An analytical expression has been found for the three

feedback gains. If l1, l2 and l3 are the desired poles, the

three state gains are:

k = (l l + l l + l l - ) / (bk )

k = -(l + l + l ) / k
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These expressions will allow the programming of the
gain as a function of E.

The command is a linear combination of the state
variables (Fig. 2): U k x k x k xR= − − − ∫1 2 3ϕ .

Fig. 2 Phase and radial loop

Simulations have been performed using Matlab.
The following results have been obtained with the three

following desired poles: − 7 7 104.  ,  10 .5j)3 54 5( .− − ,

10 .5j)3 54 5( .− + .  The reference is a 1 mm radius step.
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Fig. 3 Radius step response

The radius reaches its final value and the phase is
brought back to zero in roughly 2 ms. The corresponding
Bode plots are given in Fig. 4.
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Fig. 4 Phase and Radial loop step response, Bode

Plots

In both cases, the phase margin is approximately 55°
and the amplitude margin 15dB.

The transition jump is simulated by adding a 180°
phase perturbation on the phase. The transfer function
between ωrf and R has to be made equal to zero, the

transition jump having no effect on the radius (Fig. 5).
After jumping to π, the phase comes back to zero in less
than 0.1ms.
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Fig. 5 Simulation of transition

2.3 The synchronization loop

Using the same approximations as in paragraph 2.2,
the subsystem b in Fig. 1 can be described with three
state variables, ϕb, ωb, ϕ. As we want ϕb to follow a

ramp, a double integration is added on ϕb. The state

vector is thus :
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with ϕsync the loop reference. The evolution of Xs is

given by:
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All the state variables are observed. As the rank of

the matrix [ ]B A B A B A B A BS S S S S S S S S
2 3 4  is

5, it is again possible to determine a feedback using pole
placement, leading to the schematic given in Fig. 6.
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Fig. 6 Synchronization loop

The following results have been obtained with the

following desired poles: ( )− 7 6. , 10   10 -2.7 + 3.2j ,  4 2

( )10 - 2.7 - 3.2j  ,  -1.9 10  - 7.7 102 2 2, .
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Fig. 7 Synchronization loop, response to a ramp

The corresponding Bode plots are given in Fig. 8.
In both cases, the phase margin is approximately 60°

and the amplitude margin 13dB.
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Fig. 8 Synchronization loop, Bode Plots

3. CONCLUSION

The use of a state space representation has lead to the
design of two new feedback loops. These loops should
provide us with good stability, a good robustness and
performance, despite the system delays. The practical
realization only requires gains and summations.
Moreover, the analytical expression of the feedback
gains will allow the programming of these as a function
of energy, so that the loops will keep the same behavior
throughout the accelerating cycle.
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