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1. INTRODUCTION These variables are related by the three following
b =By 0wt
The AGS andthe RHIC must be synchronized(ransfer functions (Fig. 1) [1]: dwp = B,000s
before bunch-to-bucket transfer of the beam. A feedback OR = BRrOw
loop has been designed and an improvement has been s _ Wy

made to theAGS phase and radial loops. In both case¥ith:By =—
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the design uses a state variable representation to achieve S S

greater stability and smaller errors. The state variabI? _ b where b= ceVys cospg

are beam phase, frequency and radius, the integral of th& 2 +2£ooss+oo32 2y E

difference between the radius and its reference and the

phase deviation of the bunch from the synchronous _ \/erevnc cospshin|

phase. Furthermore, the feedback gains are programmed * '

as a function of the beam parameters to keep the same

loop performances through the acceleration cycle.
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2.1 Variables and transfer functions VCO  Cavity R

The main variables used to describe the SyStem are: i
:Subsystem a

- ¢, the phase of the beam with respect to the RF Fig. 1 Model of the system
- ¢ the instantaneous phase deviation of the bunch )
from the synchronous phase 2.2The phase and radial loop

- Ow, the variations of the beam frequency

- OR the variations of the beam radius
- ¢4 the synchronous phase

- E the total energy

-V, the accelerating voltage

In a first approximation, we presume that the cavity
transfer function is one, the beam damping terrs
zero, and the delays of the system are neglected. The
corresponding subsystem is a on Fig.1.

- ¢, the RF phase It can be described using two state variables
- w; the RF frequency B< _R_ ko
- f,, the asymptotic revolution frequency 0t b & +oo52 . A third one, corresponding to
- & the beam damping coefficient (all the calculations %2 =x1=¢
have been performed with=0.01). the integral of the difference of the radius and its

reference, is introduced to force the radius to follow its
The cavity, around which an RF feedback is closed - 5= —
’ 'reference X, =z=[(R dt. These state
can be described by its pole s B X I( RO)
variables lead to the following state space representation:
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All three state variables are observed. bt v oL b
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S the 2ran - 0o - -te -matrlx E=3GeV E=25GeV
[B¢R AyrByrAGR B¢R] is 3, it is possible to  Fig. 4 Phase and Radial loop step response, Bode

Plots

determine a feedback using pole placement [2].

An analytical expression has been found for the three |n hoth cases, the phase margin is approximately 55
feedback gains. Ifjl I and k are the desired poles, theand the amplitude margin 15dB.

three state gains are:

_ The transition jump is simulated by adding a °180
kr =it g1 b g0 J/(k g phase perturbation on the phase. Thg transfgr function
kg =-(1+l2+19/ko betweenwys and R has to be made equal to zero, the

[ (I +12+197(bk o) transition jump having no effect on the radius (Fig. 5).
These expressions will allow the programming of th&fter jumping tor, the phase comes back to zero in less
gain as a function of E. than 0.1ms.
The command is a linear combination of the state R e
variables (Fig. 2): - k x- k %x- k x. A L

U Fig. 5 Simulation of transition
— ko

2.3 The synchronization loop

Using the same approximations as in paragraph 2.2,
the subsystem b in Fig. 1 can be described with three
state variablesp,, w,, ¢. As we want¢, to follow a

ramp, a double integration is added ¢y The state
vector is thus :
Fig. 2 Phase and radial loop 0 0
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Simulations have been performed using Madilab s b Zb ? ”)b 9 sync LJD
The following results have been obtained with the three 4 X5 e X7 Xg

103(-54+ 55j). The reference is a 1 mm radius step. 91Ven by:
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All the state variables are observed. As the rank of
E=3GeV E=25GeV the matrlx[BS ABs ASBgA B A B ]5|s

5, it is again possible to determine a feedback using pole

placement, leading to the schematic given in Fig. 6.
The radius reaches its final value and the phase is

brought back to zero in roughly 2 ms. The corresponding
Bode plots are given in Fig. 4.

Fig. 3 Radius step response



_

x k

Xk¢ int2

sync

inntl

Fig. 6 Synchronization loop
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Fig. 7 Synchronization loop, response to a ramp

The corresponding Bode plots are given in Fig. 8.
In both cases, the phase margin is approximately 60
and the amplitude margin 13dB.
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Fig. 8 Synchronization loop, Bode Plots

3. CONCLUSION

The use of a state space representation has lead to the
design of two new feedback loops. These loops should
provide us with good stability, a good robustness and
performance, despite the system delays. The practical
realization only requires gains and summations.
Moreover, the analytical expression of the feedback
gains will allow the programming of these as a function
of energy, so that the loops will keep the same behavior
throughout the accelerating cycle.



