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Abstract

Spectral analysis has been used to study emittance growth
due to chromatic effects in future linear colliders. Cor-
rection techniques can be dynamically evaluated by this
method. This spectral formalism has been applied to the
TESLA linac.

1 INTRODUCTION

Displacements of focusing magnets will dilute the beam
emittance in future linear colliders through dispersive ef-
fects. The final dispersive error can be found with the help
of the spectral analysis. This formalism allows to study
the effects of static initial misalignments, as well as the ef-
fects of displacements produced by ground motion, which
is adequately described by the 2-D power spectrumP (!; k)
[1]. The chromatic dilution is then given by an integral
involving the power spectrum of the quadrupole displace-
ments and a spectral response function describing the trans-
port line. The effectiveness of correction techniques, envis-
aged in future linear colliders to recover the small required
emittance, can be also evaluated by the spectral approach
[2], provided that the correlations between space harmon-
ics are correctly taken into account. The results of the “one-
to-one” correction and the “adaptive alignment” [3] method
are given for the TESLA linac for illustration.

2 SPECTRAL ANALYSIS OF
CHROMATIC DILUTION

Let xi(t) = x(t; si) be the transverse position of quadru-
poles of a linac, relatively to a reference line, si the lon-
gitudinal position. The incoming beam angle and position
are zero, the reference line passes through some element,
placed at the entrance. The dispersion, linear term, is

�x(t) =

NX
i=1

di xi(t)

Here di is the first derivative of the beam dispersion at the
exit of the linac with respect to the displacement of the
quadrupole i, N is the total number of quadrupoles. In thin
lens approximation, in linear order

di = Ki (r
i
12 � ti126)

where Ki is r21 of the quadrupole matrix, ri12 and ti126 are
the elements of the first and the second order transfer ma-
trices from the i-th quadrupole to the exit.
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While h�x(t)i, averaged on realizations, is zero, the
mean squared value gives the dispersive error:

h�2x(t)i =
XX

didj hxi(t)xj(t)i

One can introduce the spatial harmonics x(t; k)

x(t; k) =

Z
L=2

�L=2

x(t; s)e�iksds

and by use of the back transformation

x(t; s) =

Z
1

�1

x(t; k)
�
eiks � 1

� dk
2�

which ensures that at the entrance x(t; s = 0) = 0, one can
find h�2x(t)i. For initial misalignment or (and) ground mo-
tion all spatial harmonics are independent. We have then

h�2x(t)i =

Z
1

�1

P (t; k)G(k)
dk

2�
Here G(k) is the so called spectral response function

G(k) = g2c (k) + g2s(k) (1)
with

gc(k) =

NX
i=1

di(cos(ksi) � 1) , gs(k) =
NX
i=1

di sin(ksi)

The spatial power spectrum of displacements x(t; s) is

P (t; k) = lim
L!1

1=L x(t; k)x�(t; k)

It can be easily found as far as initial misalignment or
ground motion are concerned. Assuming that focusing ele-
ments are aligned at t = 0 and then are moved by ground
motion, the evolution of the power spectrum is [1]:

P (t; k) =

Z
1

�1

P (!; k) 2 [1� cos(!t)]
d!

2�
Here the 2-D power spectrumP (!; k) characterizes ground
motion properties, including both spatial and temporal cor-
relation information. Several models of P (!; k) have been
discussed in [1]. The diffusive ground motion, leading to
large displacements after long time intervals, is described
by the “ATL law” [4]. Its power spectrum P (!; k) is:

P (!; k) = A=(!2k2)

TypicallyA = 10�5�m2s�1m�1. Though anyP (!; k) can
be considered [2], we use only “ATL” motion in the paper.

Correction procedures may introduce correlation
of phases between harmonics with different k. In a regu-
lar linac with constant spacingL, the correction techniques,
considered in this paper, introduce phase correlations only
between harmonics k and ~k = kmax�k. The mean squared
dispersion is then [2]:

h�2x(t)i = 2

Z kmax

kmin

(P (t; k)G(k) + P(t; k)G(k))
dk

2�
(2)



It contains the self correlation spectrum
P(t; k) = < lim

L!1

1=L x(t; k)x(t; ~k)

and the new spectral function
G(k) = gc(k)gc(~k) � gs(k)gs(~k)

The integral (2) is taken on the allowed band for the reg-
ular linac kmin < jkj < kmax, where kmax = �=L,
kmin = 2�=(N L) (for the finite linac the upper limit is
kmax�kmin). The ground motion, which can have any k,
has to be correctly redistributed within the allowed band.

In short, the spectral response functions G(k) and G(k)
describe the properties of the focusing channel, while the
power P (t; k) and the self correlation P(t; k) spectra de-
pend on the applied method of correction, initial misalign-
ment and ground motion.

3 “ONE-TO-ONE” TECHNIQUES

The “one-to-one” algorithm consists in zeroing the BPM
measurements. This can be done by steering the beam by
means of dipole correctors or by moving the misaligned
quadrupoles towards the beam.

3.1 “One-to-one” by steering

If the i-th quadrupole is misaligned, three angles are needed
to re-align the beam. The equivalent quadrupole displace-
ments, to be subtracted from their initial positions, are

�xi = �2xi=(LKi) , �xi+1 = �xi�1 = �xi=(LKi)

For a regular FODO lattice, with Ki = �Ki+1, a k-th
harmonics of the initial misalignment produces two har-
monics of quadrupole displacements after the correction:
k-th and (kmax � k)-th with opposite phases. Finally, the
power spectrum of quadrupole displacements after correc-
tion, with “ATL” ground motion, is [2]:

P (t; k) = L(�2ini + �2err)
�
1 + ~r22

�
(3)

+At
�
1=k2 + 1=k2max + ~r22(1=

~k2 + 1=k2max)
�

where r2 = 2(1 � cos(kL))=(LK), ~r2 = r2(~k) = 2(1 +
cos(kL))=(LK). The self correlation is

P(t; k) = 4L(�2ini + �2err)=(LK) (4)

+At
�
r2(1=k

2 + 1=k2max) + ~r2(1=~k
2 + 1=k2max)

�
Here �err is the total rms BPM error, including both BPM
offset and resolution (�2err = �2o� + �2res). We assume
Gaussian initial misalignments and BPM errors. For illus-
tration, Fig.1 shows spectra in comparson with simulations.
All examples refer to a model of the TESLA linac, when
N = 618, L = 24:4 m, phase advance � = 60o, initial
energy 
ini = 6000, 
�n = 5105, beta function at the exit
�N = 28:17 m.

The dispersion can be found by use of (3,4), provided
that injection conditions are correctly specified [2]. Alter-
natively, one can show that for the “one-to-one” corrections
the dispersive error can be written

h�2x(t)i = 2

Z kmax

kmin

P̂ (t; k) Ĝ(k)
dk

2�
(5)

0.000 0.005 0.010 0.015

10
-6

10
-5

S
pe

ct
ru

m
 (

m
**

3)

a

1/λ (1/m)

b

c

Figure 1: Initial (a), final (b) and self correlation (c) spectra
for one to one correction by steering, �ini = 100�m. All
spectra on pictures doubled in comparing with formulae.

where Ĝ(k) and P̂ (t; k) are the effective spectral response
function and the effective spectrum of quadrupole displace-
ments before correction respectively. The Ĝ(k) is built with
new dispersive coefficients [2]

d̂i = di + (2di + di+1 + di�1)=(LKi)

and P̂ (t; k) is given by

P̂ (t; k) = L(�2ini + �2err) + At
�
1=k2 + 1=k2max

�
It is useful to note that if 
ini = 
�n, then d̂i = �Kir

i
12.

An example of analytical results (5) together with simu-
lations by particle tracking is shown on Fig.2. The analyt-
ical results exhibits the following dependencies before and
after correction, respectively:

h�2xi � (�2ini + 0:5AtL) 0:038N3

h�2xi � (�2ini + �2err + 1:1AtL) 1:1N
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Figure 2: Dispersive error for the “one-to-one” correction
by steering, a) and b) �ini = 100 �m; c) and d) A�L =
10�12 m2, before and after correction.

3.2 “One-to-one” by quadrupole moving

The beam will now be passed through the center of the i-th
BPM by moving the i-th quadrupole. The resulted quad-
rupole misalignments depend only on the total BPM errors.
We can show [2] that the power spectrum of quadrupole dis-
placement after correction is

P (k) = L�2err

�
1 +

(KL)2

4(1� cos(kL))2

�
(6)

The self correlation spectrum is then

P(k) = L�2err
KL

sin2(kL)
(7)

Unlike the steering method, the power spectrum grows for



small k as 1=k4, showing a smooth deviation of the quad-
rupoles line from its original position.

These spectra can be used to find dispersion, provided
that injection conditions are correctly specified [2]. In the
same way as before, one can alternatively introduce new co-
efficients [2]

d̂i = �di +Ki

NX
j=i+1

dj(sj � si)

to build the effective Ĝ(k). The effective spectrum is
P̂ (k) = L�2err (initial misalignment and ground motion
are vanished by correction, the effect of ground motion dur-
ing correction assumed to be small). The dispersive error is
then given by (5).

The analytical results, confirmed by tracking, are:

h�2xi � �2err 3:8N

The so-called “shunt” method can be described by the
same equations. It consists in moving a quadrupole in such
a way that changing of its strength does not produce beam
shift in the next BPM. If the relative strength change is
�K = �K=K then the precision of cancelation of the BPM
offset is �res=(KL�K ). The spectra of the quadrupoles af-
ter alignment are given by Eqs.(6, 7) where now �2err =
�2res(1 + 1=(KL�K)2).

4 THE “ADAPTIVE ALIGNMENT”

The “adaptive alignment” algorithm [3] calculates from the
readings ai of three neighboring BPMs the change of posi-
tion of the central quadrupole

�xi = c0 (ai+1 + ai�1 � ai(2 +KiL)) =3

The coefficient c0 controls the velocity of convergence
of the algorithm. This procedure is repeated iteratively. If
only i-th quadrupole is misaligned and BPMs are perfect,
then the corrections at the first iteration are:

�xi�1 = �xi+1 = �c0xi=3 ; �xi = 2c0xi=3
The power spectrum after n-th iteration at t = n�t is

P(n)(k) = r2n1 L�2ini +A�t

�
1

k2
+

1

k2max

�
r21

1� r2n1
1� r21

+L(r23 + ~r24)

�
�2o�

(1� rn1 )
2

(1� r1)2
+ �2res

(1� r2n1 )

(1� r21)

�

The self correlation is

P(n)(k) = L(r3~r4 + r4~r3)

�
�2o�

(1� rn1 )(1 � ~rn1 )

(1� r1)(1 � ~r1)

+ �2res
(1� (r1~r1)

n)

(1� r1~r1)

�

Here r1(k) = 1� 2c0(1� cos(kL))=3, r3(k) = �2c0(1�
cos(kL))=3, r4(k) = �c0KL=3.

Even at n = 1, some harmonics, for which r1 = 0, is
damped completely if BPMs are perfect (see Fig.3). If c0 <
3=2 the algorithm converge. The optimum value c0 = 1.

The analytical results (2) in comparing with simulations
(particle tracking) are shown in Fig.4 (for c0 = 1). The
equilibrium value of dispersion error is approximately

h�2xi1 � (�2res + 0:0054�2o� + 0:83A�tL) 0:059N3
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Figure 3: Power spectrum after first iteration of the “adap-
tive alignment” for different co, �ini = 100�m.
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Figure 4: Dispersive error for “adaptive alignment”. a)
�ini = 100�m; b) �res = 10�m; c) �o� = 10�m; d) the
limit at n!1 of the case c); e) A�tL = 10�12 m2.

5 CONCLUSION

The spectral analysis allowed the estimation of the chro-
matic dilution in future colliders with static initial misalign-
ments and with the effects of ground motion. This formal-
ism was applied to the TESLA linac, where two different
types of correction were studied in detail for illustration.
Numerical simulations and analytical results are in good
agreement. A regular linac, having a constant spacing of
the focusing elements, is the only limitation we saw in this
spectral approach.
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