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Abstract

The transverse betatron phase has been measured at the
Cornell Electron/positron Storage Ring CESR by shaking
the beam and observing the phase of oscillation at detectors
located around the ring. From the phase measurements the
Twiss parameters can be calculated and this allows beta er-
rors to be corrected.

1 INTRODUCTION

The standard method for measuring the Twiss parameter�

at the Cornell Electron/positron Storage Ring CESR is to
measure the tuneQ as a function of quadrupole strengthkj
of the jth quadrupole. The beta at the quadrupole�j is then
obtained from the standard formula[1]

�Q =
�j

4�
�kj lj ; (1)

wherelj is the length of the quadrupole. There are a num-
ber of problems with measuring beta in this way. For one,
hysteresis in the quadrupoles limits theaccuracy and repro-
ducibilityof the measurements. Moreover, saturation of the
quadrupole iron can introduce errors in the results.

An alternative approach is to shake the beam at some
betatron sideband and then measure the phase of the oscil-
lations at the detectors around the ring. This will give the
betatron phase� at the detectors which can then be related
to the beta function via[1]

�(s) =

Z s d~s

�(~s)
: (2)

This alternative approach has recently been implemented
in CESR and is proving to be a valuable tool.

2 THEORY

The experimental setup is shown schematically in figure 1.
A shaker situated at positions = 0 shakes the beam at a
betatron sideband

!s = n!0 + !� ; (3)

where!� is the betatron frequency,!0 the revolution fre-
quency, andn is an integer. For a horizontal phase mea-
surement the beam is shaken horizontally and for the ver-
tical phase the beam is shaken vertically. The resulting os-
cillations can be observed at various detectors around the
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Figure 1: Schematic illustration of the experimental setup.

ring. The signal from a given detector is connected to a sig-
nal analyzer where it can be compared to a reference signal
from the shaker. Heterodyne bandpass filters – which give
good filtering in the stop band – are used to filter out un-
wanted frequency components. The heterodyne filter also
has the property that its center frequency can be computer
controlled which is desirable when switching between hor-
izontal and vertical measurements.

The phase�s(i) of the beam signal from the ith detector
relative to the shaker reference signal gives a measure of
the betatron phase at the detector:

�s(i) = �(i) �
�si
c
+ tc(i)

�
!s + 2�mi + �a ; (4)

where�(i) is the betatron phase at detectori, si is the dis-
tance from the shaker to the detector,c is the speed of light,
tc(i) is the time delay for the beam signal going from the
detector to the analyzer,mi is an integer, and�a is a con-
stant. Thesi andtc(i) terms are due to the time delays in
the beam going from the shaker to the detector and for the
signal going from the detector to the signal analyzer. the
negative sign is because delays represent negative phase.
Themi term is due to the fact that phases are always mea-
sured modulo2�. Finally, the�a term, which is a constant
independent of the detector being used, takes care of such
things as time delays in the reference channel, etc.

In order to be able to subtract off the terms due to the
transit delays the shaking is turned off and the filters are ad-



justed to pass signals at the revolution frequency. The ref-
erence channel is also switched to a reference signal which,
because it is derived from the RF system (cf. figure 1), is
synchronous with the longitudinal motion of the beam. For
the ith detector the phase�rev(i) of the beam signal at fre-
quency!0 relative to the reference is

�rev(i) = �

�si
c
+ tc(i)

�
!0 + 2� pi + �b ; (5)

wherepi is an integer, and�b, which is a constant inde-
pendent ofi, is due to various factors such as delays in the
reference channel, etc. Only the changes inpi between de-
tectors are needed since any constant part can be absorbed
into �b. Differences in2�pi � tc(i)!0 between detectors
are due to differences in cable lengths. A change of 1 unit
in pi represents a cable length change of (very roughly)
2�c=!0 = L0 whereL0 is the ring circumference. For
CESRL0 is 768 m. This represents an enormous change in
cable length and, since the approximate cable lengths are
known, it is a simple matter to ascertain thepi.

Using Eq. (5) in Eq. (4) gives

�(i) = �s(i) + 2�mi + (�rev(i) � 2� pi)
!s

!0
+ �c ; (6)

where�c = �a � �b!s=!0 is a constant. The value of
�c is immaterial since phases are always calculated rela-
tive to some arbitrary zero point. The tricky part here is
that if !s is less than 0 (i.e. n < �!�=!0 in Eq. (3))
then themeasured�s will have a reversed sign from what
it should be since a spectrum analyzer will always calcu-
late the phase under the implicit assumption that the input
frequency is positive. In this case��s should be substi-
tuted for�s in Eq. (6). In Eq. (6)mi can be obtained using
knowledge of the phases from the theoretical design lat-
tice. For CESR, the measured phase typically differs from
the theoretical phase by of order2�=10. Thusmi is simply
chosen such that the measured phase most closely matches
the theoretical phase.

Each detector in CESR consists of 4 button electrodes
labeled 1 through 4 as shown in figure 2. In theory, for a
horizontal phase measurement at a given detector, the mea-
sured phase at buttons 2 and 4 will be 180� opposite the
phase of buttons 1 and 3. A similar situation occurs with
the vertical measurement. The appropriate average of the
button phases to obtain�s is thus

�s =

(
1
4
(�4 � �3 + �2 � �1) Horizontal

1
4
(�4 + �3 � �2 � �1) Vertical.

(7)

For the measurement of�rev all the button phases should
be the same so the appropriate average is

�rev =
1

4
(�4 + �3 + �2 + �1) : (8)

Because of the symmetry of the button configuration cou-
pling between the horizontal and vertical motions caused
by skewquads, etc. does not cause any changes in�s as
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Figure 2: Beam button layout at a detector.

long as the beam centroid is centered between the buttons.
Even when the beam is off–center there is good cancella-
tion of the phase shifts of the individual button signals due
to coupling. This was a necessary requirement since for
CESR the phase shift at the individual buttons due to cou-
pling can easily be more than the phase deviations from the
theoretical that need to be measured. For�rev there is no
affect due to coupling even with an off-center beam.

3 EXPERIMENTAL RESULTS

Figure 3 shows an initial (before correction) measurement
of the horizontal and vertical beta and betatron phase. Plot-
ted in the figure is the deviation of the measured beta and
phase from the values of the theoretical design lattice. For
the phase data�c in Eq. (6) has been adjusted so that the
average of�meas � �theory is 0.

Since the theoretical design lattice has been optimized to
give optimum machine performance (in terms of maximal
dynamic aperture, maximal luminosity, etc.) the large de-
viations of the measured beta from the theoretical shown
in the figure – over 40% in places – leads to a significant
degradation in performance. To correct this the quadrupole
strengthskj in the theoretical model are adjusted so that
the calculated beta and/or phase matches as closely as pos-
sible the measured values. These fittedkj ’s are (presum-
ably) equal to the actualkj ’s present in the ring and the
correction is made by adjusting the ring quadrupoles by an
amountkj(theory)�kj(�t). Fitting only to the phase data
the measured beta and phase after correction are shown in
figure 4. The beta and phase errors have been substantially
reduced. In fact, an analysis shows that most of the beta er-
ror shown in figure 4 is due to second order effects (change
in beta with change ink) not accounted for by Eq. (1) and
that the actual RMS of(�meas��theory)=�theory after cor-
rection is only about 2% percent. Typically only one round
of measurements/corrections are needed to achieve a cor-
rection to this level.

4 CONCLUSION

A possible disadvantage with the phase measurement is
that it is relatively insensitive in regions of large beta. How-



Figure 3: Initial beta and betatron phase relative to the the-
oretical values. The numbering system in CESR is such
that the ith detector is close to the ith quadrupole.

ever, since measurements are made in both the horizontal
and vertical planes, and since large�x usually goes with
small�y (and vice versa), this has not proved to be a prob-
lem in CESR. In fact, better results are obtained when cor-
recting the Twiss parameters using the phase measurements
compared with using the beta measurements.

One significant advantage of the phase measurement is
that, unlike the beta measurement, it is sensitive to varia-
tions in the phase over long distances. This can be impor-
tant for closure of bumps. Additionally, CESR is east/west
symmetric and the presence of this symmetry causes the
strengths of some resonances to be zero. Since phase er-
rors can break this symmetry it is important to be able to
accurately measure and correct the phase.

Another advantage of the phase measurement is that it
can be used when there are significant orbit displacements.
With a beta measurement there is the problem that a or-
bit displacement, coupled with a variation in quadrupole
strength, will result in a variation in the orbit which, in turn,
causes tune variations due to the sextupoles. For CESR, in

Figure 4: Beta and betatron phase relative to the theoreti-
cal values after correcting using only the phase data of the
previous figure.

normal operation, a ‘pretzeled’ orbit is used so that multi-
ple bunches of electrons and positrons can share the same
beam pipe and it is useful to be able to measure the Twiss
parameters for the orbit used in operation.
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