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1  ABSTRACT

A method for the optimization of an axially symmetrical
electrostatic system is described. An accurate version of
the Boundary Element Method is used to solve Laplace’s
equation to obtain the potential along the optical axis.
We use this field when we reformulate the nonlinear
equation of particle motion in phase space as a linear
equation in phase moment space. A continuous genera-
lized analogue of Gauss brackets is used to calculate the
matrizant for the motion equation with the field
coefficient matrix. In this method there is a rigorous
conservation of the phase volume of the beam at each
stage of the calculation.

The above matrizant for the given geometries is used
and the sizes of the object (first) and aperture (second)
diaphragms are varied to obtain the minimum spot size
at the specimen for a fixed emittance. Some synthesized
systems are presented.

2  INTRODUCTION

In design of charge particle focusing systems the crucial
question always is: what is the best system for the
application at hand? Sometimes it is difficult to
determine what is the optimal system because we have
some controversial demands. In this paper we formulate
exactly what is the optimal system in our case. The
electrostatic round lenses are widely used for forming
and transportation beams themselves as well as a part of
more complicated systems [1]. We consider the focusing
system which consists of two round diaphragms and
three cylinders, having equal diameter with thin walls
and rotational symmetry about the central axis z . The
middle cylinder has the potential ±V . The potential of
the remaining cylinders and diaphragms is zero. There is
a charged particle beam with initial energy E0  and with

a given emittance which is determined by two
diaphragms separated by a distance l12 . The first

diaphragm, which is placed at a distance ld  from the

central plane of the middle cylinder, is the object
diaphragm with radius r1  and the second one is the

aperture diaphragm with radius r2 . For a given bright-

ness the emittance defines the beam current. We consider
the differential equation of motion of the charged
particles accurate to terms of third order inclusive. The

following problem is solved: what are the values of V ,
r1 , l 12  and the geometry of the system which provide the

minimum beam spot size on the target situated at the
distance lt  from the central plane of the middle cylinder?

We are also investigating the influence of the geometry
of the focusing system on the minimum spot size and on
its demagnification. This system can be used in
microprobe devices if ld  is much bigger than lt .

3  THE METHOD OF EMBEDDING IN
PHASE-MOMENT SPACE FOR SOLVING

THE NONLINEAR EQUATION OF
MOTION

It is convenient to choose a set of variables, for which the
phase volume remains unchanged during the beam
motion. For the electrostatic field these variables have the
following form:
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Here p z( )  is the dimensionless momentum of the axial

particle, γ ( )z  is its relative total energy, W0  is the rest

energy of an axial particle and ϕ( ) ( )z V z q W= 0  is

the dimensionless axial potential. In our study we take
E kV0 30= .

The analysis and calculation of the nonlinear systems
of equations for monochromatic beam formation in the
static field are considerably simplified by transforming
from the nonlinear differential equations of motion in the
phase space ( x x y y1 2 1 2, , , ) to the system of linear

equations in extended phase space - the phase-moment
space. This is the essence of the method of embedding in
phase-moment space [2]. For the differential equation of
motion of the particles accurate to terms of k-order we
have the phase-moment space of k-order. In the paraxial
case (the equation of the first order) we usually obtain
two linear equations for two phase-moment vectors of the
first order [ ] { }~ ,x x x1 1 2=   and [ ] { }~ , .y y y1 1 2=  If the



motion of the monochromatic beam is described by the
third order equation, we have two linear equations for
two phase-moment vectors of the third order:
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The writing of the nonlinear equation in a linearized
form makes it possible to construct its solution using a
matrizant, which is independent of the initial vector
{ , , , }x x y y10 20 10 20 , whereas the solution of the nonlinear

equation is sought for each value { , , , }x x y y10 20 10 20 .

To the nonlinear equation of the third order we can
associate a linear equation for the phase moments:
dx dz P z x[ ] ( ) [ ]3 3= , where P z( )  depends on the axial

potential ϕ( )z  and its first four derivatives. For the

electrostatic axisymmetric field, the equation in y - plane

is obtained from the equation in x  - plane if x y→ ,

y x→ . The solution of this equation is written in terms

of the matrizant ( )R z z0  in the form:

 ( ) ( )x R z z x R z z I[ ] [ ],3 30 0 0 0= = .

A continuous generalized analogue of Gauss brackets
[3] is used to calculate the matrizant for the motion
equation with the field coefficient matrix. In this method
there is a rigorous conservation of the phase volume of
the beam at each stage of the calculation.

4  THE ANALYTICAL MODEL OF THE
AXIAL POTENTIAL

We choose the analytical model of the axial potential in
the form of piecewise-continuous function:

ϕ ϕ( ) ( )z zj= −2 1 ,   if   z z zj j2 2 2 1− −≤ ≤ ,     and

ϕ ϕ( ) ( )z zj= 2 , if z z zj j2 1 2− ≤ ≤ ; where

ϕ2 1 2 1 1 2j jz const U j− −= = =( ) , , ,... , ϕ2 j z( )  is changed

from U j2 1−  to U j2 ,  while z  is changed from zj2 1−  to

z j2  and the four first derivatives of ϕ2 j z( )  are zero for

z z j= −2 1  and for z z j= 2 . With these conditions the

function ϕ2 j z( )  has the following form:
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5  THE METHOD OF THE MOMENTS OF
THE PARTICLE DISTRIBUTION

FUNCTION OVER WHOLE TOTALITY
OF THE PHASE COORDINATES

It is known that the information about the averaged
characteristics of a beam can be obtained by calculating
the moments of the particle distribution function in phase
space [4]. We consider the beam motion as a motion of
the closed phase set. This allows us to introduce the
matrix of the moments M  of the distribution function
over whole totality of the phase coordinates, where

M z f x x y y x x dx dx dy dy( ) ( , , , ) [ ]~[ ]= ∫ 1 2 1 2 1 2 1 23 3
Ω

.

The integration is performed over the apertures of two
diaphragms. The averaged radius r z( ) of the beam is

determined by the matrix element M z11( ) . We suppose

that   f x x y y( , , , )10 20 10 20 1=
for ( ) ( ) ( )x x l y y l r l20 10 12
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r z M z( ) ( )= 11 ,  ( ) ( )M z R z z M R z z( ) ( )
~= 0 00 ,

M x x dx dx dy dy( ) [ ]~ [ ]0 3 30 0 10 20 10 20= ∫Ω

M( )0  is a function of r1 , of emittance em r r l= 1 2 12/ ,

and of l12 .

For our system we use the analytical model of the axial
potential , where the first (object) diaphragm is located at
the position z0 0= ,  the target is placed at the position

z z l ztot j= = = ∑5
1

5

∆  and U U1 5 0= = , U U3 = ± . We

use the following notations for the geometry of the
system: ∆ ∆z z lg2 4= = ,  ∆z lc3 = ,  ∆z g5 = .

6  THE OPTIMIZATION PROCEDURE

To apply a numerical optimization to our system a merit
function has to be defined. We choose  merit function as
ρ = r l tot( )  for a given emittance. Before the merit

function can be evaluated the third order matrizant

( )R z 0  has to be calculated. Since this matrizant

depends on the particle trajectory, the first-order stig-
matic property, which is described by the equation
R ltot12 0( ) = , must be satisfied before calculating this

matrizant. Our program calculates the elements of the
matrizant of the third order, which is used for further
calculations with each particular geometry. For the given
geometry and initial energy E0 , we find from the



equation R ltot12 0( ) =  the value of the potential V

which provides the stigmatic property of the system.
The merit function is a function of r1  and of l12 . All

remaining parameters are fixed when we are seeking for
the minimum value of ρ , and we find this minimum for

different parameters. The radius of the object diaphragm
has the strongest influence on the beam spot size for the
given emittance. It is very important to use the optimal
r1  for obtaining the smallest beam spot size. The result

of such calculations for different emittances and for one
chosen geometry is shown in Table 1 (g = 20 cm). The
results for the chosen emittance (10 -9 m) and for
different geometries are given in Table 2 (g = 4 cm).

Table 1

em (µ m) ρ  (µ m) r1 (µ m) l12 (cm)

10-5 0.0126 0.263 1.0

10-4 0.0711 1.350 3.8

10-3 0.399 8.31 10.

10-2 2.25 46.8 31.

10-1 12.63 263. 91.

Table 2

lc (cm) ρ  (µ m) r1 (µ m) V (kV) d

33
0.83

0.79

19.0

17.4

12.4

-21.1

-20.2

-20.0

25
0.55

0.52

13.5

12.4

14.0

-34.3

-22.3

-21.7

17
0.42

0.40

11.4

9.8

18.3

-47.0

-24.5

-23.3

14
0.39

0.37

10.6

9.5

19.0

-51.7

-25.3

-23.9

11
0.36

0.34

10.5

9.2

19.6

-56.4

-26.1

-24.5

0.1
0.29

0.27

9.4

7.7

20.6

-71.4

-28.7

-26.5

7  THE CONNECTION BETWEEN THE
PARAMETERS OF THE ANALYTICAL
MODEL OF THE AXIAL POTENTIAL

AND THE PARAMETERS OF A THREE
CYLINDERS LENS

An accurate version of the boundary element method was
used to solve Laplace’s equation for the given lens

geometry and polarizations [5]. We can obtain the
potential and the field at any point of the lens. By this
way we find the axial potential distribution and its
derivatives. Once the field distribution is known, the
equations of motion are integrated by the Dormand-
Prince method. We have found the correspondence
between the parameters of the analytical model and the
following parameters of the real system: the radius of
cylinders, rcyl,, the gap between cylinders, lgap, and their
lengths, l l1 3=  and l2 . The result of this synthesis is

shown in Table 3. In the first row, upper (lower) values
have been obtained for positive (negative) potential V.

Table 3

lc (cm) rcyl  (cm) l1 (cm) l2 (cm) lgap (cm)

25
1.25

1.90

7.9

7.9

32.0

32.0

0.5

0.5

17 2.74 9.6 27.6 1.0

14 3.10 10.2 26.5 1.0

11 3.5 11.2 24.4 1.0

8  CONCLUSION

A new optimization method is proposed, described and
illustrated. This method allows to determine the real
parameters of focusing electrostatic systems with
rotational symmetry, which gives the minimum beam
spot size on the target for a given emittance. For some
systems this minimum has been found together with the
appropriate values of radii of two diaphragms for a set of
emittances.
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