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1 ABSTRACT
A method forthe optimization of an axiallgymmetrical frollolwmgngrt(;]blem I; sglve?\:vhattarr;vthf:e;]a|llr€!\3/igf t\P/1
electrostatic system is described. Accurate version of "1’ 12 a e geometry of theyste ch provide the

the Boundary Element Method is usedsiive Laplace’s minimum beam spot size othe target situated at the
equation to obtain the potential along the optical axiglistance | from the central plane of the middle cylinder?
We usethis field when we reformulatéhe nonlinear We arealso investigating the influence of tiggometry
equation of particle motion in phase space dmear of thefocusing system othe minimumspot sizeand on
equation in phase moment space. A continuous geneits- demagnification. Thissystem can be used in
lized analogue of Gauss brackets is used to calculate thizroprobe devices if,l is much bigger than, |

matrizant for the motion equation with thefield

coefficient matrix. In this method there is dgorous 3 THE METHOD OF EMBEDDING IN

conservation of the phasmlume ofthe beam at each
stage of the calculation. PHASE-MOMENT SPACE FOR SOLVING

The abovematrizantfor the givengeometries is used THE NONLINEAR EQUATION OF
and thesizes of theobject (first) and aperturdsecond) MOTION
diaphragms are varied to obtain the minimspot size
at the specimefor a fixed emittanceSome synthesized
systems are presented.

It is convenient to choose a set of variables, for which the
phase volumeremains unchanged during thieeam
motion. For the electrostatic field these variables have the

following form:
2 INTRODUCTION ) N C I _p(2 .,
’ yl - y" y2 - y !

In design of charge particle focusisgstemshe crucial R p(0) p(0)

guestion alwaysis: what is thebest system for the I Ny

application at hand?Sometimes it is difficult to where p(2) =yy*(2 -1,

determine what is the optimalstem because we have _ + _.. Eo
- : = - =1+ 2,

some controversialemands. In this paper viermulate V@ =y(0)+e(0-¢(). v(9 W,

exactly what is the optimalsystem inour case. The

electrostatic round lensemre widely used forforming _ o _

and transportatiobeams themselves as well apaat of particle, y(z) is its relative total energy, s the rest

more complicated s_ysten[ﬂs]. We consider théocusing energy of anaxial particle and ¢(2) = V(2)q/W, is

systemwhich consists oftwo round diaphragms and e gimensionless axial potential. In atudy we take

three cylinders, having equal diameter wittin walls E =30kV.

and rotationalsymmetry abouthe central axis z. The ° _ _ _

middle cylinderhas the potentiatV . The potential of "€ analysisand calculation of the nonlineasystems

the remainingcylindersand diaphragms igero. There is of equations for monochromatic beam formation in the

a charged particle beam withitial energy E andwith static field are considerably simplified byransforming

. . . . . from the nonlinear differential equations of motion in the
a given emittance which is determined by two a

. . . h h fli
diaphragms separated by a distancg. IThe first P ase_ spgce (x X 2y 2 to the system oflinear
diaph hich is placed di by h equations in extended phase spadhe- phase-moment

laphragm, which is placed at a distange fiom the spaceThis is theessence dahe method of embedding in

central plane of the middle cylinder, is thebject phase-moment space [2]. Ribe differential equation of
diaphragm with radius,rand the semnd one is the motion of the particles accurate to terms of k-order we

aperture diaphragm with radius .rFor a given bright- have the phase-momespace of k-order. Ithe paraxial

ness the emittance defines theamcurrent. We consider €@S€(the equation of the first order) wesually obtain
the differential equation of motion of the chargedWO linear equations fawo phase-moment vectors of the

particles accurate to terms tfird order inclusive. The first order X[1] ={x,.x,} and ¥[1]={y,.y,}. If the

Here p(2) is the dimensionless momentum of the axial



motion of the monochromatioeam is described by the
third order equation, we havevo linear equations for
two phase-moment vectors of the third order:

where U :3\/—\/, AU =U,,, - Uy, AZ

]
0

5 THE METHOD OF THE MOMENTS OF

i T % T Ly

X[ =0 o X X0 XX X X3 XY THE PARTICLE DISTRIBUTION
2 2 2
X021 X1 XYY 2 %o 2} FUNCTION OVER WHOLE TOTALITY
and OF THE PHASE COORDINATES
VI3 ={Y, Yo V3 V2Vo ViV 2 Vo VX2, Y X X, It is known that the informationabout the averaged
2 Vs vk VX2 characteristics of a beaoan be obtained by calculating
Y1X5,Y2X1,Y X1 X5, Y,X5} - the moments of the particle distribution function in phase

The writing of the nonlinear equation in a linearizedpace [4]. We considéhe beam motion as a motion of
form makes it possible to construts solution using a the closed phase set. Thisllows us to introduce the
matrizant, which is independent of the initieéctor matrix of the moments M of the distributidaonction
{X10:X20:Y10: Y20} » Whereas the solution of the nonlineaover whole totality of the phase coordinates, where

equation is sought for each value,{ X,o Y15 Y 20 - } M (z) :Inf(xl,xz,yl,y LSX[3IX[Jdx dx dy dy ..

To the nonlinear equation of tfaird order we can  Thg jntegration is performeaver the apertures of two
associate alinear equationfor the phase momenf[s: diaphragms. The averaged radiug )ofzthe beam is
d3]/dz=P(z)x[3], where R y depends on the axial determined by the matrix element ¥ ).2We suppose
potential ¢(z) and itsfirst four derivatives. For the that 1(Xg: %r Yags Vo) = 1
electrostatic axisymmetric field, the equation in y - plan%aOr (oo + X/l )2+ (o Yol 2 € (]l )°
is obtained from the equation in x - plane if-x ,y — 2 "V R
y - x. The solution othis equation is written in terms %10 " Y0 =1 ’Zandf(xlo’xzmylzmyzo) =0 2f0f
of the matrizantR(z/ z,) in the form: ()220 +):10/| 122) Va0 +Y 10/l 12) >-(r2/l )" _

X3 = R(z/zo)xo[fi, d 7/ Zo) _— X tYe>1 and (0) = 1. In this case we obtain

A continuous generalized analogue of Gauss bracket&?) =+ Mu(2) , M(z) = R(Z/ ZO) M(0) R(Z/ 70)’

3] is used to calculatéthe matrizantfor the motion = 3
Eaciuation with thdield coefficientmatrix. In thismethod M(0) L,Xo[qxo[@dxlodx 2 1Y 2
there is a rigorous conservation of the phesieme of M(0) is a function of y, of emittance em i },
the beam at each stage of the calculation. and of |,.
For oursystem we uséhe analyticalmodel ofthe axial
4 THE ANALYTICAL MODEL OF THE potential , where the firgbbject)diaphragm idocated at
AXIAL POTENTIAL the position g =0, the target is placed at the position

We chooséhe analyticaimodel ofthe axial potential in , _ z =1, = iAZ_ andU.=U.=0. U.=+U. We
the form of piecewise-continuous function: oL roTs o ms e
0(2) =,4(2), if 2, ,< 25 24, and use the following notations forthe geometry of the

) ‘Nz, =Nz, = =1, Az =g.
0(2) =0, (2), if 2y S22 2y, where system:Az, =8z, =1y, Az, =1, £z5 =9

by = coNSE= Uy FL2,., 05(2) IS changed 5 e opTIMIZATION PROCEDURE
from U,_, to U,, while z is changed from,z, to ) o )
To apply anumerical optimization to ousystem amerit

i function has to bdefined. We chooseamerit function as
z=12,_, andfor z=z,. With these conditions the p=r(l,,) for a given emittanceBefore the merit

z,; and thefour first derivatives of¢,;(z) are zero for

function ¢,;(2) has the following form: function can beevaluated thethird order matrizant

s AU, R(z/0) has to be calculatedSince this matrizant

¢,(2) = Uzi-1+(z_ 22!-1) (Az5 * depends on the particleajectory, the first-order stig-

AU AJU matic property, which is described hpe equation

(z— sz)(_5 ) +(z— sz)(15_71+ R.,(l,,) =0, must be satisfiedefore calculating this
Az Az matrizant. Our prograntalculates the elements of the

AU, matrizant of the third ordemvhich is used forfurther

3 Z- Bz~ Zz,,)(7- ) AZ° ), calculations with each particulgeometry. Fothe given

]

geometry and initial energy E, we find from the



equation R,( ;) =0 the value of the potential V
which provides the stigmatic property of the system.
The merit function is a function of, rand of |,. All
remaining parameters afiéed when weare seeking for
the minimumvalue of p, and we find this minimum for
different parameters. The radius of thigectdiaphragm
has the stronge#tfluence on théveam spot size for the
given emittance. It izery important tousethe optimal
r, for obtainingthe smallesbeam spot sizelhe result

of such calculations for different emittancasd for one

geometry and polarizations [5]. We cambtain the
potentialand thefield at any point ofthe lens. By this
way we find the axial potential distributiorand its
derivatives. Once thdield distribution is known, the
equations of motion are integrated by the Dormand-
Prince method. We have founthe correspondence
betweenthe parameters of the analyticabdel and the
following parameters ofhe realsystem:the radius of
cylinders, g, the gapbetween cylindersgd, and their
lengths, | =L and |,. The result of thisynthesis is

shown in Table 3. In the firsbw, upper (lower) values

chosen geometry is shown in Table 1 (g = 20 cm). Thgyye peen obtained for positive (negative) potential V.

results forthe chosen emittance (18 m) and for

different geometries are given in Table 2 (g = 4 cm).
Table 1
em (um) p (um) re (pm) l12 (cm)
10° 0.0126 0.263 1.0
10* 0.0711 1.350 3.8
10° 0.399 8.31 10.
102 2.25 46.8 31.
10" 12.63 263. 91.
Table 2
le(€m)| p (um)| ra(um) | V(kV) d
33 0.83 19.0 12.4 -20.2
0.79 17.4 -21.1 -20.0
- 0.55 13.5 14.0 -22.3
0.52 12.4 -34.3 -21.7
17 0.42 11.4 18.3 -24.5
0.40 9.8 -47.0 -23.3
1 0.39 10.6 19.0 -25.3
0.37 9.5 -51.7 -23.9
1 0.36 10.5 19.6 -26.1
0.34 9.2 -56.4 -24.5
o1 0.29 9.4 20.6 -28.7
0.27 7.7 -71.4 -26.5

7 THE CONNECTION BETWEEN THE
PARAMETERS OF THE ANALYTICAL
MODEL OF THE AXIAL POTENTIAL
AND THE PARAMETERS OF A THREE
CYLINDERS LENS

An accurate version of tHeoundary element method was
used to solve Laplace'squation forthe given lens

Table 3
lc(cm) | rey (cm)| li(cm) | kL (cm) | lgap(cm)
o5 1.25 7.9 32.0 0.5
1.90 7.9 32.0 0.5
17 2.74 9.6 27.6 1.0
14 3.10 10.2 26.5 1.0
11 3.5 11.2 24.4 1.0

8 CONCLUSION

A new optimization method is proposed, described and
illustrated. This methodillows to determinethe real
parameters of focusing electrostatisystems with
rotational symmetry, which giveghe minimum beam
spot size orthe targetfor a given emittance. Faeome
systemghis minimum hadeen found together with the
appropriate values ofdii of two diaphragmdor a set of
emittances.
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