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1  ABSTRACT

The optimization matrix method is proposed and descri-
bed for studying focusing systems which produce for a
given beam current the smallest beam spot size on the
target. The use of this method is illustrated in the
optimization of the nonlinear quadrupole focusing system
which is an essential part of a microprobe and determines
the microprobe resolution.

We consider the differential equation of motion of the
particles accurate to terms of third order inclusive. Before
the investigation of the nonlinear equation of beam
motion, we are solving the linear equation. For each
geometry of the system we find the excitation of the
lenses and the demagnification. For solving the nonlinear
equation we use the matrix method of embedding in the
space of phase moments. In this method the initial
approximate differential equations are replaced by the
linear equations in the space of phase moments with the
same accuracy. The lower limit of a spot size and the
appropriate initial beam radius for different emittances
are found.

2  INTRODUCTION

The purpose of a focusing system is to obtain the
minimum of a beam spot size ρ  for the initially

diverging beam. In this paper we deal only with a
focusing system such that it forms ρ < r1 , where r1  is the

initial beam spot size. Such a system is used in nuclear
microprobe where the beam  is focused to strike the small
area of the specimen that is to be analysed. The beam
spot size ρ  defines the microprobe resolution. What is

the lower limit of ρ ρ= m  for a given emittance which is

possible to obtain using different focusing systems? To
solve this problem  it is not enough to consider the linear
approximation of the equation of a beam motion. We
must take into the consideration the nonlinear terms.
This paper describes the analytical and numerical
methods which allow us to find ρm . Some numerical

results are presented.

3  THE MICROPROBE FOCUSING
SYSTEM

The focusing system consists of the lens system and two
diaphragms or two collimating slits, placed in front of

the lens system, and separated by the distance l12 . The

core of the focused accelerator beam is selected with a
first diaphragm which then acts as an object (the object
diaphragm with radius r1 ) to be demagnified by the lens

system. A second diaphragm controls the aperture (the
aperture diaphragm with radius r2 ) and hence the

aberrations of the lens system.
The following are assumed given: the total length ltot

of  the focusing system (the distance from the position of
the object to the position of the Gaussian image), the
working distance g (the distance from the exit plane of

the last lens to the position of the Gaussian image ) and
the beam emittance em r r l= 1 2 12 . The distance between

the j -th lens and the j+ 1-th lens is denoted by sj , the

effective length of the j -th lens is lj , and the dimen-

sionless excitation of the j -th lens is κ j .

Focusing of particle beams is usually accomplished by
quadrupole lenses. A number of probe forming
combinations based on quadrupole doublets, triplets and
quadruplets have been employed. The Russian
Quadruplet as used on the first focused probe at Harwell
is the most popular configuration [1], partly because of
its symmetry and its orthomorphic character which
permits the use of circular object diaphragms.

We restrict here our study to the Russian Quadruplet,
which consists of a set of four quadrupoles (magnetic or
electrostatic), with alternating polarities. The two outer
ones are coupled together, with the length l1  and the

excitation κ κ1 4= , as are the central ones, with the

length l2  and the excitation κ κ2 3= . The separation

between the first and the second lenses and the third and
the fourth ones is s1  and the separation between the

middle lenses is s2 . We use the rectangular model for the

distribution of the axial magnetic induction gradient  or
electric field gradient. In the present paper we consider
the differential equations of motion of the particles
accurate to terms of third order inclusive. That means we
take into consideration all geometrical aberrations of the
third order. Two types of quadruplets have been studied:
systems with negative demagnification and with no
crossover inside the quadruplet (the first excitation
modes) ; systems with positive demagnification and with
one crossover in each plane inside the lenses (the second
excitation modes).



4  THE MATRIX METHODS OF
ANALYTICAL AND NUMERICAL

INVESTIGATION

The calculation of the optimal focusing system involves
the solution of a nonlinear inverse multiparameter
problem. The entire solution of this problem includes: the
selection of the coordinate system, in our case a
rectangular (Cartesian) system attached to a particle
moving along the longitudinal axis z ; writing out the
equations of motion and the electromagnetic field
equations in the selected coordinate system; the
expansion of the equations of motion and field equations
in Taylor series in powers of the deviation from the axial
particle (in our case, to terms of the third order
inclusive); the technique of solving the nonlinear
problem in configuration space by reformulating it as a
linear problem in phase moments space (the method of
embedding in the space of phase moments [2]).

Using the last method, we obtain two linear equations
for two phase moment vectors of the third order
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The tilde denotes transpose. The writing of the nonlinear
equation in a linearized form makes it possible to
construct its solution using a matrizant, which is
independent of the initial vector { , , , }x x y y10 20 10 20 ,

whereas the solution of the nonlinear equation is sought
for each value { , , , }x x y y10 20 10 20 .

The solution of these equations is written in terms of
the matrizant ( )X z z0  and ( )Y z z0 in the form:
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Using the rectangular model for the distribution of the
axial magnetic induction gradient  and electric field
gradient we have obtained in the relativistic case the
analytical solution for ( )X z z0  and ( )Y z z0 .

For finding the averaged radius of the beam we use the
matrices of the moments Mx  and My of the distribution

function over whole totality of the phase coordinates [3],
where
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The integration is performed over the apertures of two

diaphragms. We define the square of the averaged radius
r z( ) of the beam as the maximum value from the matrix

elements M zx11( )  and M zy11( ) , where
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We consider the case of two round diaphragms and we
suppose that f x x y y( , , , )10 20 10 20 1=  for
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the analytical expression for the ( 12 12× )  matrix M( )0 ,

which is a function of r1 , of emittance em , and of l12 .

5  THE METHOD OF THE NUMERICAL
INVESTIGATION

We choose merit function as ρ = − ∗r l ztot( )  for a given

emittance, where l ztot − ∗  is the position of the circle of

least confusion. Before the merit function can be evalua-
ted our program calculates the elements of the matrizant
of the third order, which is used for further calculations
with each particular geometry. For the given geometry
from the first-order stigmatic equations X ltot12 0( ) =  and

Y l tot12 0( ) =  we find the values of the excitations κ1  and

κ2 .

The merit function is a function of r1  and of l12 . All

remaining parameters are fixed when we are seeking for
the minimum value of ρ . The radius of the object

diaphragm has the strongest influence on the beam spot
size for the given emittance. It is very important to use
the optimal r1  for obtaining the smallest beam spot size.

6  THE RESULT OF CALCULATIONS

The optimal parameters (the low limit of minimum spot
size ρ  and appropriate values of r1 , r2 , l12  and

demagnification d  ) as the result of numerical
optimization are shown in Tables 1 - 3, where the upper
line is for the magnetic quadruplet and the lower line is
for the electrostatic system. The total length ltot  in all



our calculations is 8 m. The systems with the negative
demagnification have a minimum spot size if all lenses of
these systems are grouped together [4]. All remaining
lengths are fixed. Tables 1 and 2 list the values for the
first and second excitation modes.

Table 1

ρ  (nm) r1 (µ m) r2 (µ m) g (cm) d

362

454

7.96

10.2

19.3

23.9
5 -21.5

394

466

7.84

9.2

19.5

26.3
10 -19.2

425

498

7.55

9.0

20.1

26.7
15 -17.2

460

506

7.35

8.0

20.5

29.7
20 -15.5

483

535

7.08

7.7

13.6

30.7
25 -14.0

Table 2

ρ  (nm) r1 (µ m) r2 (µ m) g (cm) d

326

442

254

339

14

11
5 813

343

460

144

194

22

17
10 417

386

488

95

120

33

27
15 250

408

543

69

92

37

30
20 165

448

584

53

69

45

37
25 116

Table 3 shows how ρ , r1 , and r2  depend on the

emittance for one chosen geometry
( s1 20 04 4 0 05= = =. , , . m   s  m   g  m ). It is possible to

describe this dependence for ρ  by the following

expression: ρ = k g l l s s l emtot( , , , , , )1 2 1 2
3 4 , where for

the chosen geometry  k≈ 1.8  for the magnetic systems
and k≈ 2.4  for the electrostatic quadruplet.

Table 3

em (nm) ρ  (nm) r1 (µ m) r2 (µ m) k (m1/4)

10
1.860

2.340

1492

1904

23.7

18.5

1.86

2.34

1
326

442

254

339

13.9

10.5

1.83

2.49

0.1
57

80

45

60

7.2

6.0

1.80

2.53

0.01
10

13

8.4

10.7

3.6

3.1

1.79

2.37

0.001
1.8

2.3

1.4

1.9

1.4

1.4

1.79

2.34

7  CONCLUSION

The described matrix method is very efficient for solving
different problems connected with the optimal  particle
beam motion. In this paper using this method we have
found the lower limit of the spot size for the microprobe
focusing system, consisting of the magnetic or
electrostatic Russian Quadruplet. This limit depends
mainly on the value of the emittance of the beam.
Nonseparated quadruplet (with negative demagnification
and with no crossover inside) gives a smallest spot size
10-15% larger than separated systems (with positive
demagnification and with one crossover inside in each
plane). The separated Russian quadruplet has an
advantage over the nonseparated system because it has a
5-20 times bigger demagnification. The latter
configuration allows the use of an object diaphragm
which is 5-20 times bigger. The electrostatic system gives
a smallest ρ  ≈30% larger than magnetic quadruplet.
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