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Abstract

   Several new algorithms for sorting of the dipole and/or
quadrupole magnets in synchrotrons and storage rings
are described. The algorithms make use of a
combinatorial approach to the problem and belong to the
class of random search algorithms. They use an
appropriate metrization of the state space. The phase-
space distortion (smear) is used as a goal function.
Computational experiments for the case of the JINR-
Dubna superconducting heavy ion synchrotron
NUCLOTRON have shown a significant reducing of the
phase-space distortion after the magnet sorting.

1. INTRODUCTION

   In assembling of an synchrotron or storage ring the
following problem arises: whether to install the magnets
in their locations around the ring in a random way or to
try to find an optimum magnet sequence so as to get a
better beam quality?
   The magnet ordering procedure requires for the dipole
or multipole field errors in each individual magnet to be
preliminarily measured. The ordering algorithm can
minimize the local orbit distortion, the magnitude of
several isolated resonance driving terms etc. The sorting
is practically cost-free and this is its most attractive
feature.
   The magnet sorting has been applied for the first time
to the TEVATRON to minimize the strongest driving
terms of nonlinear resonances driven by sextupoles-[1].
   The present paper describes several new algorithms for
optimum installing of the dipole and/or quadrupole
magnets in synchrotrons and storage rings.
   As a large number of harmonics contribute to the
aperture limitations it is not enough to minimize few
driving terms only. For that reason we have chosen the
phase-space distortion  (smear)  as a figure-of-merit.
  Let us have M magnets for installation at M
consecutive locations around the accelerator ring.
   Let us denote by k=1,2,...,M the successive numbers of
the magnets and by j=1,2, ...,M the successive numbers
of the locations.
   The arrangement of the magnets can be described
mathematically by permutations
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   The permutations (1) compose the combinatorial space
of permutations PX . Its power is M! i.e. is extremely
large even for small machines so that a direct
enumeration of all the variants is practically impossible.
   Let  Q = Q(X) be the goal function, nonlinear in the
general case. We will discuss the explicit expression of
the goal function in the next chapter.
   The problem of finding the minimum of the function
Q(X) over the points of the combinatorial space PX is
known as the ‘nonlinear assignment problem’ of the
discrete programming-[2] and in cases of large
dimension it proves to be a difficult task. That is why
new approaches to the problem should be looked for.

2. GOAL  FUNCTION

 The magnet sorting could be implemented on the base

of: a.) dipole component, b.) sextupole component, c.)
octupole component of the nonsystematic magnet errors
i.e. the goal function whose value is minimized during
the sorting could be: a.) closed orbit, b.) magnitude of
isolated resonance driving terms, c.) phase-space
distortion (smear).
   The random normal sextupole component of the dipole
field is the most important parameter limiting the
accelerator aperture.
   In practice the location of the working point in the tune
diagram is carefully chosen to be far from any dangerous
nonlinear resonance. For that reason we have chosen the
distortion of the linearity of the particle motion (smear)
as goal function. In other word the magnet sorting  will
try to find such a magnet sequence that assure almost
linear behaviour of the particles within the accelerator
aperture.
   The beam envelope distortion due to sextupole fields
with normalized integral strengths K′l is given by:
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   The beam envelope distortion due to octupole fields

with normalized integral strength K′′l is given by:
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   Functions Fx, Fy and Gx, Gy depend on β, ε, Q and µ
and their explicit expressions can be found for example
in-[3].
   We will define the goal function of the magnet sorting
as:
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   For large machines one must install the magnets in
groups due to the limited magnet storage capacity. Let
all the magnets be divided to p groups containing Mp =
M/p units. In this case we will apply the multi-step
optimization. The optimization process could be
described as follows. As a firs step we will install the
magnets of the first group with numbers from 1 to Mp at
the first Mp locations in the ring. We will use for that a
goal function of type (4) but now the summation over j is

from 1 to Mp. Let ∆ ∆ ∆ ∆a a a ax
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envelope distortions corresponding to the optimum
arrangement of the magnets of the first group. During the
second step we will install the magnets of the second
group with numbers from (Mp+1) to 2Mp. We will take
into account the results obtained during the installation
of the first group of magnets i.e. the goal function for the
second step of optimization process should be:

 
Q Max a a a a a a

a a

x
s

x
s

y
s

y
s

x
o

x
o

y
o

y
o

2 1 2 1 2 1 2

1 2

= + + +

+

{ , , ,

}

* * *

*

∆ ∆ ∆

∆
(5)

The multi-step optimization process goes on until the
last p-th group of Mp magnets is installed.

4. SORTING  ALGORITHMS

As have been said above the perturbations X-(1)
constitute a combinatorial space PX . The points in this
space are all possible permutations X of M elements {1,
2, ... , M}. Let us introduce a metric in the PX space in
the following way: the distance r(X,Y) between the point
X and the point Y is assume to be equal to the minimum
number of transpositions (pair interchanges) necessary to
bring point X to the point Y. It can be shown that all
the metric properties are fulfilled under such a
definition. The metrization of the PX space allow us to
develop algorithms for finding of the optimum magnet
sequence.

4.1. Controled  Random  Search

 The algorithm belongs to the class of random search
algorithms.
   In contrast to the simple random search when at each
iteration i one chooses (randomly) a point Xi from the
whole combinatorial space PX and after that determines
the smallest value in the set {Q(X i)} in the present
algorithm at each iteration i the region of investigation
S(Xi-1)⊂PX  is shrinked
   We can divide S(Xi-1) in two parts that do not intersect:
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   If Xi-1 is the point Xmin of global minimum of Q(X) S-

will be empty, otherwise its power is ≠0.
   The ratio of shrinking of the region S(Xi-1) should be
such that S+≈S- i.e. the probability to find a point Y∈S-

should remain large enough.
   The algorithm consists in the following steps.

Step 1. Let Q0 be the smallest upper limit of the
goal function Q(X) for X∈PX. Let R0 be the initial radius
(R0≤(M-1) as the largest distance between two arbitrary
points of PX  is equal to (M-1)).Let N0 be the initial
number of iterations.

Step  2.  Let X∈PX be a point chosen by random
sampling  with uniform probability distribution function.
Let Q=Q(X) be the value of the goal function in the
point X. Let  δ= Q/Q0 .

Step  3. Let R=δαR0 be the current radius.
The value of the parameter α should be
experimentally adopted to the investigated goal
function. Let SR(X) be a sphere centred in the point X
with radius R.Check whether R≤1. According to our
definition of the metric in the combinatorial space PX this
is the smallest possible radius.If we have reached R≤1
limit the algorithm stops and we assume the current
point X to be the point of minimum Xmin. If R>1 we set
Nit=δαN0, n=0 and go to the step 4.

Step  4. Chose a point  Y∈SR(X) by random
sampling with uniform probability distribution.Set
n=n+1.

Step  5. Check whether Q(Y)<Q.If yes go to
step 7, if not go to step 6.

Step  6.  Check whether n>Nit. If yes stop the
algorithm and set XMin=X,if not return to step 4.

Step  7. Set  X=Y , Q=Q(Y) and return to step
3.

When the current point X approaches the
minimum Xmin the number of points Y: Q(Y)<Q(X)
diminish i.e. in order to keep the balance between the
powers of the sets S- and S+ we must shrink the region
SR(X). Shrinking SR(X) we simultaneously reduce the



number of points for investigation i.e. the necessary CPU
time. With proper choice of the shrinking speed the
algorithm can avoid the local minima and stops at the
global minimum. 

4.2. Random  Search  Making  Uuse  of the
Decrease  Vector

   The algorithm belongs to the class of random search
algorithms. The idea of the method is at each iteration to
restrict the number of checked points  i.e. points Yj∈PX

at which we calculate the values of the goal function
Qj=Q(Yj) and after that compare these values for finding
the minimum  to a unite sphere (sphere with radius R=1).
In fact this unit sphere will be a unit neighbourhood
S1(Xi-1) of the best point Xi-1 found at the previous
iteration.
   An important point is that we will calculate the
socalled decrease vector instead of the goal function
valuesthemselves. By definition the decrease vector is
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                                    R(X,Y)=1
   It is an analogue to the gradient in the discrete case. In
many cases it is much easier to calculate the decrease
vector than the goal function. Thus for the goal function

under consideration (4) the decrease vector for ∆ax
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   The algorithm consists in the following steps.

Step  1.  Let X∈PX be a point chosen by random
sampling with uniform probability distribution.
Let
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     Set i=0 (iteration counter).
Step  2.  Let S1(X) be a sphere centred in the

point X with  radius R=1.By random sampling with
uniform probability distribution choose a point Y∈S1(X).
Calculate∆1(X,Y);∆2(X,Y);∆3(X,Y);∆4(X,Y)
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Set i=i+1.
Step  3.   Check whether Q(Y)<Q(X)?    If yes

chose the point Y as the new current ‘best’  point (X:=Y)
and set:
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If Q(Y)>Q(X)  check whether     i<Niter=(M-1)M/2?  If
yes- return to step 2; if not-stop the iterations  and set
XMin=X, QMin=Q(X).
   In the algorithm we have used that the number of
points in unit neighbourhood of X is (M-1)+(M-
2)+...+1=(M-1)M/2.

4. COMPUTATIONAL  EXPERIMENTS

   As a computational experiment we have studied the
case of the JINR-Dubna superconducting heavy ion
synchrotron NUCLOTRON-[4]. This synchrotron has 8
superperiods with 32 FODO cells and 96 dipole magnets.
The betatron frequencies are Qx =6.71 and Qy =6.87.
   The rms error levels have been taken as:
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according to results of the magnet measurements.
Given the distribution of the sextupole and octupole
errors in the dipole magnets we were able to reduce by
magnet sorting the phase-space distortion to more than
one order of magnitude.
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