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Abstract

A new numerical procedure computing the ion optical
transformation matrix up to second order will be presented.
The magnetic flux distribution of an ESR dipole magnet
is determined with the electromagnetic simulator MAFIA.
The reference trajectory between the inflector magnet and
the in–ring septum magnet, which enters the fringe field of
the dipole in a tangential way, is integrated by using the
calculated discrete field data. Along the trajectory, the ra-
dial derivatives of the field distribution are calculated and
the linear ion optical matrix elements are determined by in-
tegrating the well known differential equations of the Hill
type. We obtain the second order coefficients by integrat-
ing the corresponding driving functions as proposed by
K. L. Brown and K. G. Steffen. The new procedure has
been tested by applying it to a dipole with homogenous
field and with parallel entrance and exit faces. The results
are compared with calculations using the ion optical codes
GIOS, RAYTRACE and TRANSPORT.

1 INTRODUCTION

Usual ion optical program packages describe beam lines
as a sequence of elements like dipoles, quadrupoles, drift
spaces etc., which are determined by some physical para-
meters. The treatment of fringe fields, however, is only
possible in a restricted manner, e.g. approximated by three
integrals [1].

Problems occur if the real fringe fields cannot be handled
somehow idealized, as in case of the ion injection into the
ESR [2], where the beam enters the first ESR dipole magnet
tangentially. In addition the trajectory between the inflector
magnet and the in–ring septum magnet cannot be described
analytically. Thus a numerical treatment of the whole prob-
lem is the consequence, i.e. calculating the magnetic flux
density using a static field solver, integrating the reference
trajectory and computing the ion optical coefficients with
respect of the numerical data.

In the following we restrict our calculations to deflecting
magnets, with reference orbits lying in the symmetry plane
of the optical device.

2 SECOND ORDER EXPANSION

We introduce a global coordinate system�;  ; �, with �;  
lying in the midplane of the deflecting magnet. The local
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coordinate system along the reference trajectory isx; y; z,
wherex is the outer normal andz the tangent to the tra-
jectory in the midplane, as shown in figure 1.� gives the
radius of curvature at each point of the trajectory.

            

Figure 1: Global and local coordinate systems.

We want to describe the ion optical behaviour of a given
deflecting magnet, i.e. we are interested in the mapx
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In order to get the first order coefficients(x1i jx
0

j ) the fol-
lowing differential equations for the so called principal tra-
jectoriesC, S and the DispersionD have to be solved:

C
00

x (s) + kx(s)Cx(s) = 0; C
00

y (s) + ky(s)Cy(s) = 0;

S
00

x(s) + kx(s)Sx(s) = 0; S
00

y (s) + ky(s)Sy(s) = 0;(2)

with boundary conditionsC(0) = 1,C 0(0) = 0, S(0) = 0,
S

0(0) = 1 and

D
00

x(s) + kx(s)Dx(s) = h(s); (3)

with boundary conditionsD(0) = D
0(0) = 0. The prime

denotes derivation with respect to the path lengths along
the reference trajectory. In the general case the curvature
h(s) = 1=�(s) and the factorsky(s) = �q=p0@By(s)=@x

andkx(s) = h
2(s)�ky(s) are non-constant and have to be

determined, using the a priori given chargeq and momen-
tum p0 of the reference particle, the calculated magnetic
flux densityB and its derivatives normal to the trajectory.

For the second order coefficientsqijk = (x1i jx
0

jx
0

k) also
the second order field derivatives must be taken into ac-
count. The corresponding differential equations have the
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Figure 2: The fieldB�(0;  ; 0) of the test magnet.

form
q
00

ijk(s) + kx(s)qijk(s) = fijk(s); (4)

with varying driving functionsfijk(s) and are listed in [3,
4]. These functions depend on the second field derivative
normal to the reference trajectory. To get their optimum
accuracy we consider to use for their determination field
values on a larger box around the trajectory and to get the
fields in its near neighbourhood by harmonic interpolation
[5].

3 THE PROCEDURE

For arbitrary structures with midplane symmetry we pro-
pose the following procedure. First the magnetic field
distribution is calculated using the static field solver S of
the electromagnetic simulator MAFIA [6]. Then we de-
termine the trajectory with the MAFIA tracking module
TS3. Finally the differential equations (2), (3) and (4)
are solved numerically using the computer algebra pack-
age MATHEMATICA[7].

4 A TEST MAGNET

To assure the accuracy of the solution, we tested the
new procedure, implemented as part of the MAFIA TS3-
module, on an idealized dipole magnet with parallel ends.
The magnet length is0:8 m and the gap height is0:08 m
Figure 2 showsB�(0;  ; 0), the magnetic flux density in
the midplane over an interval of2 m. The maximum is1
Tesla and the field is constant in� direction. In this case
five transformation coefficients only depend on the injec-
tion and the ejection angle and therefore are given analyti-
cally [8].

Figure 3 showsky(s) andkx(s), referring to the first nor-
mal derivative for an injection angle� = 15� and a particle
rigidity of 2 Tm calculated during the tracking process by
using the discrete field data. They are functions of the arc
lengths.

In Figure 4r(s) = �q=(2p0)@
2
By(s)=@x

2 is plotted,
which is used in the second order calculations.

Table 4 compares our first and second order results with
the ion optical Codes GIOS [9] , TRANSPORT [10] and
RAYTRACE [11].

5 THE ESR-DIPOLE

As mentioned in the introduction the ion optical treatment
of the ion injection into the ESR is difficult, because the
reference trajectory is not given analytically and lies about
2m in the fringe field region. Therefore the accurate simu-
lation of the fringe fields has to be the first step. Figure 5
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Figure 3: The left plot shows the stiffness parameterky(s)

which is proportional to the first order field derivative.
kx(s) on the right side gives the quadratic path curvature
h(s) minusky(s). Both parameters are functions of the arc
lengths.
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Figure 4: Weighted second order field derivativer(s)

shows the simulation of the Rogowski profile at the dipoles
exit face and figure 6 a radial cut to demonstrate the effects
of the shims.

Figure 7 shows a cut of the simulated ESR-Dipole and
the calculated trajectory. The particle rigidity is8:5513Tm
and the maximum field strength at the magnet midplane
is 1:35 T. We complete our studies with the plots of the
calculated parameters (figure 8) and principal trajectories
(figures 9).

6 CONCLUSION

The proposed procedure allows the determination of the
first and second order ion optical coefficients in arbitrary
field distributions with midplane symmetry. These coeffi-
cients will be used in TRANSPORT and MAD simulations
of the ESR and its injection and ejection lines to define cor-
rective measures (sextupole magnets).

            

Figure 5: Fringe field at the exit face of the ESR-Dipole
with the Rogowski profile.



GIOS TRANSP. RAYTR. MAFIA
(x1jx0) 1.01905 1.01905 1.01907 1.01905
(x1jx00) 2.00866 2.0092 2.0084 2.00847
(x1j�0) 0.44333 0.44339 0.44320 0.44326
(x01jx0) 0.00000 0.00000 0.00000 -0.00011
(x01jx00) 0.98130 0.98130 0.98120 0.98112
(x01j�0) 0.44209 0.44209 0.44201 0.44205
(y1jy0) 0.77318 0.77300 0.77304 0.77297
(y1jy00) 1.86295 1.8620 1.8626 1.86250
(y01jy0) -0.20084 -0.20109 -0.20000 -0.20095
(y01jy00) 0.80943 0.80927 0.80954 0.80949
(l1jx0) 0.45051 0.45051 0.45044 0.45051
(l1jx00) 0.45297 0.4531 0.4528 0.45291
(l1j�0) 0.02848 0.02794 0.02866 0.02848

(x1jx0x0) 0.00000 -0.00000 0.00000 0.00040
(x1jx0x00) 0.45219 0.4522 0.4521 0.45167
(x1jx0�0) 0.08072 0.08071 0.08067 0.08063
(x1jx00

x
00) 0.23105 0.2311 0.2308 0.23071

(x1jx00
�
0) 0.08553 0.08583 0.08740 0.087291

(x1jy0y0) 0.06538 0.06787 0.06670 0.06503
(x1jy0y00) -0.30774 -0.3111 -0.3048 -0.30764
(x1jy00

y
00) -0.61383 -0.6180 -0.6115 -0.61350

(x1j�0�0) -0.44408 -0.4441 * -0.44362
(y1jx0y0) -0.03666 -0.03606 -0.03668 -0.03631
(y1jx0y00) 0.35505 0.3523 0.3549 0.35854
(y1jx00

y
0) -0.54456 -0.5546 -0.2726 -0.55062

(y1jx00
y

00) 0.3310 0.3257 0.3309 0.33709
(y1j�0y0) 0.31741 0.3446 0.3181 0.31960
(y1j�y00) 0.36471 0.3875 0.3630 0.36596

Table 1: First and second order coefficients calculated with
TRANSPORT, RAYTRACE and the new MAFIA proce-
dure (in TRANSPORT notation).

            

Figure 6: Radial cut which shows the lateral fringe fields,
the position of the coils and the shims of the ESR-Dipole.
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Figure 7: Simulated trajectory of the injection.
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Figure 8: Stiffness parametersky(s) andkx(s).
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Figure 9: Principal trajectoriesCx(s), Sx(s), Cy(s) and
Sy(s).


