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Abstract

At present, mathematical methods of modeling and opti-
mization are extensively used in many fields of science and
technology. Development of specialized software for var-
ious applications becomes of ever increasing importance.
A specid class of the problems attracting attention of nu-
merous researches is represented by the problems associ-
ated with the beam dynamicsformationin accelerators. The
paper deals with optimization problems of charged parti-
clebeam in Linac. The theory of the optimal beam dynam-
icsformationin both accelerating and focusing structuresis
suggested. Different mathematical control models describ-
ing beam dynamics are presented. Especialy we consider
the problems connected with taking into account of charged
particles interaction. New classes of functionas are intro-
duced for the estimation of beam dynamics. The optimiza
tion methods are developed for the presented functionals.
They are used for the solving of various beam dynamics
problemsin different accel erating and focusing structures.!

1 CONTROL PROBLEM

The praoblem of beam control of interacting particles, which
dynamics is described by integro-differential equations, is
considered. Let us assume that evolution of particle beam
is described by equations [1, 2]
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Heret isisthetime; x isn-vector of phase coordinates, v =
u(t) isr-dimensiona control vector—function; p = p(t, x)
isthe particle distribution density in the phase space; f; is
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n-dimensional vector—function determined by external elec-
tromagneticfields; f, isn-dimensiona vector—function as-
sociated with the particle interactions; the set M, ,, isthe
cross-section of the trgjectory set. It is obtained by time
shift of theinitial set M, through solutions of equation (1)
with given control v = wu(t). The set M, isagiven setin
the phase space, which describesthe set of initia statesfor a
charged particle beam at theinitial time moment. Thefunc-
tion po () isagiven function describing the particle distri-
bution density at the moment ¢t = 0.

Theequations(1) —(2) can beconsidered asVlasov equa-
tions. We meet with these equationsif interaction between
particles, for example the Coulomb repulsion, istaken into
account.

Let usintroduce afunctional
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characterizing the dynamics of the process. Here ¢ and g
are given non-negative functions, T isfixed.

Consider the minimization problem of functional (4).
Analizing various systems which are designed for acceler-
ation, focusing and transporting of charged particle beams,
it should be noticed that electrical and magnetic fields can
betreated in a certain structural and parametric form. Thus
certain components and parameters of electromagnetic
fields and geometric systems of accelerating or focusing
can be taken as control variables.

2 OPTIMIZATION METHODS

The directed methods of the optimal structures search are
presented in [1, 2]. These methods are based on the follow-
ing form of functional variation
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Here and further * denotes transposition. The auxiliary
functionst and A satisfy the following equations
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dp(te(t) [ 9f(ta(t),u(b)
—a (T+

Ediv, f(t, (t), u(t)))” ¢(t, z(t) +

(&p(t,x(té;(hﬂﬂ))) — p(t, z(t)) %

G e R

Inthe case u = u(t, x) we can obtain ana ogous formulas.

As it was mentioned above formulas (5), (11) for the
functional variation allow us to constract various methods
of searching for optimal control. If the control w is defined
by some set parameters, then we can obtain formulafor gra
dient of thefunctional (4).

(12)

3 MODELING OF BEAM DYNAMICS

Consider severa control problemsrelated to the formation
of required accelerating and bunching regimes for charged
particle beams. First describe the problem of particles cap-
ture in the accelerating mode. Consider, for definitness,
the particle dynamicsin thefield of traveling—wave. With-
out taking into account theinteraction between the particles
the equations of the longitudinal motion have the following
form
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where v = W/W, is the reduced particle energy; ¢ isthe
particle phase; ¢ isthe reduced distance; «(€), Bpn(§) are
the reduced parameters of the accelerating wave.

Let M, bethe set of initial energies and phases (o, o)
for the system (13). Assumethat ¢ € [—m,x]. Denote
by v(£,70, %0), (€, 70, o) thesolution of the system (13)
with theinitia data (vo, o). Then the capture of the parti-
cles with the initial values from M|, into the acceleration
mode means that for arbitrary (o, 9o) € M the phase
©(&,70,p0) € [—m, x| foral & € [0,L]. Here L isthe
reduced length of the accelerator. Call M, the set of cap-
ture into acceleration mode. Let the set M, be such that
any subset isthe set of capture into acceleration mode and
any set including 1, and not identical to it does not fit the
requirement. Call M, themaximal set of captureinto accel -
eration mode. Itsareais called the longitudinal acceptance
of accelerating structure.

Assume
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The functions a.(€) and G, (§) are used as control. Let us
introduce the function
(w—w1)?, w<uwr;
g(w, wi,ws) = 0, w € [wr,wal; (15)
(w—w2)?, w>ws.
Suppose
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G(V; <)O) = 029(77 “Ymin ’Ymax); (16)

where C; and C-, are the weight constants.

Functiona (14) with the functions ® and G defined
by (16) are non—negative. They are equa to zero in the
case when M, is the set of capture in acceleration mode
and the output energies of particles are within the interval
[Ymin, Ymax)- INthiscase A = ~Ypax — Ymin defines the
width of the particle energy spectrum.

Thus minimizing the functional (14) one can providethe
required particle capture into the acceleration mode with
prescribed accelerating rate. Varying the values ~,,;, and
~Ymax ONE can change accel eration rate and energy spectrum
of the output beam. Extending the set 1/, one can solve
longitudinal acceptance maximization problem.

To andlize alongitudinal motion with space charge, we
consider the model of large—scale particles. We model the
beam by assembly of thick disksof radius R and 2d inthick-
ness. Let uswrite out equationsfor the traveling wavefield
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a isthe channdl aperture; ) istotal beam charge; A isthe
wave length in the free space; e is the charge of particle;
myg istherest mass of particle; ¢ isthe speed of light; e is
the eectric constant; J; isthe Bessal function of the first
order; \,, are the roots of zero order Bessdl function, i.e.
Jo(Am) = 0.

Here we assumed that

/ (€0, po)dEodpy = 1.
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When integrating (17), (18) for computation of the phase ¢
it may be wise to consider the differential equation

o g2 __1 4
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instead of equality (19) and then integrate it together with
the preceding eguations.

By anadogy with functional (14) we may introduce the
corresponding functional in this case, too.

A number of different problems of beam physics can be
solved with the hel p of mentioned above or anal ogous func-
tionals. Some applications of thisapproach are considered
in[1—4].

4 CONCLUSION

Problems of beam dynamics optimizationare stated as prob-
lems of trgjectory bundle control. An extensive class of dy-
namic systems and problems under study enables solutions
of avariety of accelerator—theory problems, related to the
forming of optimal beam dynamics in the accelerating and
focusing structures.
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