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Abstract

In this paper we analyze the behavior of area preserving
maps and related bifurcationsin an accelerator system asa
function of the tuning involving orbital and external wave
frequencies. It isfound out that while sharp tuning leads to
nonmMonaotonic maps, poor tuning leads to monotonic maps.
The transition between these two situationsand the associ-
ated sequences of bifurcationsare studied in detail.

The purpose of this paper is to compare sequences of
Hamiltonian bifurcations preceding chaos in weakly and
strongly resonant wave-particle interactions. The terms
weak and strong refer to the magnitude of the frequency
mismatch between wave and relativigtically-shifted parti-
cle frequencies, weak means large mismatches and strong,
small mismatches.

Inthemodel, arelativistic particleis simultaneously sub-
mitted to the action of abackground magneticfield pointing
along the z axis and an el ectrostatic harmonic wave propa
gating along the z axis. The corresponding adimensional
Hamiltonian can be written as[1]-[2]

H =14+ P24 (P,+2)2+ P22+ 4, cos(kz —wt). (1)

With the normalizations adopted the wave frequency « and
¢ k are both measured in units of the electron-cyclotron fre-
quency.

Teking P, = 0, introducing canonical guiding center co-
ordinates, P, = /21 cos 8, z = v/21 sin 6, and making use
of the harmonic expansion for Bessel functions, it becomes
possibleto cast the Hamiltonianin the resonant form [3]-[ 7]

H=H,()+A4, -Iif Jl(k\/ﬁ) cos(l0+(1-1)wt) (2)

where H, = [1 + 2I + P2]*/? — w T and wherethel = 1
resonance has been conveniently rendered time indepen-
dent by means of usual canonica transformations. Hamil-
tonian (2) generates a set of primary resonances I(n n_1),
n = +1, 42, +3..., that can belocated along the action axis
I of the appropriate gyro phase-space according to relation
n|wo(I(n,n-1))| = (n—1) w. For higher order isandsapos-
itiveinteger m may appear on the right-hand side replacing
(n—1)intheformn|wo(I(n,p))| = mw, m/n < 1; weshal
refer to the ratio m/n as the winding of the island chain.
Specializing the discussion on cyclotronicwave frequencies

w = 1 from now on, one notesthat the most important influ-
enceinthelow energy regionI ~ 0 comesfromthe(1,0)-
resonance. ltssalient roleisaresult of theassociated Bessel
factor which is much larger than those of other resonances
there; indeed, onehas J; (2v/1)/ Jn (2VI) ~ 1/I(*=1)/2 >,
1ifI <« 1.

Let usthenanalyzethe (1, 0)-resonancein some more de-
tail. Theappropriateresonant Hamiltonian can bewrittenin
the form:

21
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Hi,o)= 61— nI*+ A,
where besidesw = 1 wehavealso set k = 1, recalling that
I«

Examining Hamiltonian (3) we point out that an effec-
tive negative mismatch é isintroducedwhen P, > 0. If § is
sufficiently small, island saturation is governed by the bal-
ance involvingthe nonlinear n-term and the Bessel function
term. Inthiscase which we call strongly resonant in view of
the smallness of the mismatch term, saturationisrelativistic
since the nonlinear term comes from rel ativistic mass cor-
rections[1, 5]. Intheweakly resonant case where é islarge,
island saturation is nonrel ativistic because it is commanded
by the linear 6-term.

In any case, the maximum amplitude of the (1, 0)-
resonance can be obtained by setting 6 = H; 0y = 01in
(3); thelast equality, in particular, definesthe boundary tra-
jectory, i.e. thetrgectory dividing trapped from untrapped
orbits in the gyro phase-space. The maximum amplitude
of weakly resonant islands (quadratic terms discarded),
can be thus estimated as I,, = (1/2)(4,/6)? and the
amplitude of strongly resonant islands (6 term discarded)
asI, = (1/2)Y/3(4,/n)?/®. Thisleads to conclude that
saturation isweakly resonant with I, dominating over I,
Lyr < I, when 4, < A.(P,) = 21/2(8%/2/n'/?); the
reverse situation takes place when 4, > A.(P,).

1.1 Strong Resonance

In the strongly resonant case one can approximately set
P, — 0 and obtain some analytical results[2]. It has been
shown that in this case the tuning character is nonmono-
tonic. Starting from the central eliptic point of island (1, 0)
and moving towards I — oo, the frequency first decreases
as one goes towards the boundary and then increases as one
crosses the boundary and proceeds beyond.



1.2 Weak Resonance

Intheweakly resonant regime, onecan performal.ie pertur-
bative theory to estimate the frequency behavior inside the
(1, 0)-island[2]. Inthissecond case the system can be seen
as displaying a monotonic tuning character where the fre-
guency isawaysincreasing as one movestowardsI — oo
gtarting from the centra elliptic point.

In both cases, thefrequency at theboundary can be shown
to be non-zero. This remarkable fact leads to unusual in-
verse saddle-node bifurcation at and close to thislocation.

2.1 Strongly Resonant Bifurcations

Consider thestrongly resonant regime first, that is, the non-
monotoniccase. Thefrequency islarger a theelipticpoint,
decreases as one approaches the boundary and startsto in-
crease again asI — oo. Now, as one increases the wave
amplitudeachaininternal tothe(1, 0)-resonancewithwind-
ing[r, s] (symbol “()” denotesoriginally external chainsand
“[1" denotes internal chains) is born at the central elliptic
point when the amplitude is such that r|w.| = sw. Con-
sidering the shape of the frequency curve and the fact that
the whole curve displaces upwards as the wave amplitude
increases, the chain start to migrate towards the boundary
arriving there at the same time as the boundary touches an
externa chain with the same winding. Then, ainverse sad-
dle node bifurcationislikely to occur.

2.2 Weakly Resonant Bifurcations

In the weakly resonant case, the situation changes. In view
of the fact that the tuning character is purely monotonic
there can be no simultaneous presence of internal and ex-
ternal chainswith the same winding; this point has not been
made clear in previousworks[2]. Sincein thiscase the gy-
rofrequency decreases as one approaches the central dlip-
tic point, as the wave amplitude grows an originally exter-
nal (m, n) chainisengulfed by the expanding boundary, be-
comes thereafter an interna chain, moves towardsthe cen-
tral eliptic point, and eventually vanishes there when the
wave amplitude 4, issuch that mw, = nw.

3 THE GENERAL CASE

The question which has not yet been properly analyzed in
theliterature, refersto what happenswith the external chain
if oneisoperatingin theneighborhood of thetransitionfrom
weak to strong resonant regimes. What islikely to happen
in this case is that the external chain collapses against an
internal chain after theformer has crossed the boundary but
before it reaches the central elliptic point. Let us seeif this
iswhat really happens.

Weuse P, = 0.4 toillustratethistransition case. Aspre-
dicted above, theexternal chain crossesthe(1, 0)-boundary
but do not arrive at the central eliptic point, undergoing the
inverse saddle-node before that. Fig. (1) displaysthe gyro
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Figure 1: Poincaré surface 0? %ctlonsfor A, = 0.125 and
P, =0.4.

phase-space for the P, = 0.4 case. The outermost chainis
the originally external p = 5-chain and the innermost is a
[5, 1]-chain produced at the centrd elliptic point. Thefigure
represents the dynamics just before the saddle node. Fig.
(2) represents the dynamics at saddle node; for a dightly
larger value of A, thanthat of Fig. (4b), theexterna elliptic
pointsal so vanish. We emphasi ze that the saddle-nodetakes
placeinsidethe(1, 0)-boundary which isthe curve connect-
ing(I =0,0 =—x/2)to(I = 0,60 = x/2), but much after
the external island has chance to arrive at the central fixed
point.
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Figure2: Pomcarewrfacemp%ctlonsfor A, =0.1255and
p: =04

The cal culations performed in this paper indicate that the
position of saddle-node bifurcationsin accel erating systems
are sensitive on the value of the injected beam momentum
P,. Inadditionto previousanaysisfor large and small val-
ues of P, we have found here that in intermediary cases
external resonances get through the boundary and undergo
inverse saddle-node before they reach the centra elliptic
point.
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