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Abstract transversal electrostatic wave and a stationary extraordi-

In this work we study the effects arising from the inclusionggz m_o%e. 'I:he vector potential relatedia is written
of a stationary extraordinary mode in the resonant intera¢~_% — ~° vy .

. . . . The electrostatic wave has an amplitutlg and propa-
tion of a particle beam in a magnetized plasma and perpen-

. . . . gates in thez-direction with wave vectok and frequency
dicularly propagating electrostatic waves. It is found tha . . ) .
wy. Itis assumed to be a magnetized Langmuir wave with

for a stationary mode frequency of the order of the Larm . :
. i ; : ebye length sufficiently small that one can consider the
frequency and with a suitably chosen amplitude one is abje

to suppress the resonance which drives the weakly relativiﬁ:-equenz 0 be&?igﬁ?&?iﬁgg&\%ﬂ; Vﬁg;(g; Ajsum-
tic dynamics into chaos. Improved regular acceleration of; (i” 5 fCO’Q with w. as the plasma f?e uenhc _and
initially low energy particles is thus attained. AnalyticalwCO “p = Weor “p b d y

estimates of the optimal stationary mode amplitude and;‘éféoqirtf:';%/ me as the nonrelativistic electron cyclotron

study of the topological effects due to resonance suppres-—r, stationary extraordinary mode have frequengy

2:%nu;r§0r;]rsesented. Main results are verifyed by numencghd wave vectokx || & related to each other by the cold

dispersion relation. Let us choose the frequency in order to
satisfy the following relationy% —wj ~ w?, suchthatitis
1 INTRODUCTION near the right-hand cut-off frequency. If this is the case, the

With the advent of powerful radiation-generation sys-r.nOde is approximatelly circularly polarized, and the rela-

tems such as free-electron lasers, cyclotrons autoresonatlgre1 ckx [wx N.wp/w”o < 1Lis valid. Tak"?g |nt<_) account .
masers, gyrotrons and ion-channel lasers, a good deal of € above relation a_nd the fact that we will be interested in
fort has been directed to the study of the interaction of lo € low energy part_|cles we can sqfely ass_dmeL <1
energy particles and large-amplitude waves [1-5]. Whe \_Nlth_rL as_the particle Larmor radius), which enables one
ever wave-particle exchange is likely to occur, particles catrq write A = Ao + Ax as
be highly accelerated, which is of importance in particle eA

acceleration and in current drive techniques of controlled mc?

thermonuclear research. . wheres = kx E/wx By, with E the eletric field amplitude.
In this paper we study how can one improves the regu- |niroducing canonical guiding-center variablds, (=

lar acceleration in the resonant interaction of magnetizedo7 459 » = /27 sin 9) and scaling time and distance
particles and a tranversal electrostatic wave. We analyg@wc0 andw.o/c, the dimensionless particle Hamiltonian
the introduction of a stationary extraordinary mode. The, given by

main idea is to generate a resonance that destructively inter-

= Box {—esin(wxt)Z + [1 + € cos(wx )]},

feres with the wave-particle resonance that drives initially ~ H = {1+ 2I + 4cI[sin” § cos(wxt)

low energetic particles into chaos. It is shown that for a —  cosfsin@sin(wxt)]} (1)
judicious choice of the stationary mode amplitude the dy- +00

namics of these particles can undergo strong modifications, + Ay, Z Jn(kNV21)cos(nf — wpt),
varying from completely diffuse to regular with highly in- n——oo

creased acceleration. Numerical results obtained by direchere the term proportional t? is discarded and, as we

integration of the equation of motion are shown in order 1’ N . . e ;
test the validity of the method. are considering particles with very low initial energies, we

setP. = 0 and, for simplicity,P, = 0. Since the differ-
ences between the frequencies involved in the above sys-
2 MODEL tem,w.q, wx andwy,, are all of the order abf, < 1, itwill

Consider a relativistic electron beam immersed in a loW€ @ssumed in the following thaj, = wx = weo (O in

density, cold, magnetized plasma, with background magdimensional formy, = wx = 1).
netic field given byBy, = ByZ, perturbed both by a
3 ANALYSIS OF THE RESONANCES
*Work partially supported by FINEP, CNPg, CESUP-UFRGS and

FAPESP. A. Pendulum-Like Electrostatic Resonances




Let us by now focus on the perturbations of the particle 4 RESONANCE SUPPRESSION
motion due to the electrostatic wave. The appearance oft beain b vzina th timal stati d
primary wave-particle resonances is related to each of t}JT us begin by analyzing the optimal stationary mode am-

harmonics in the last term of the Hamiltonian (1). Theif itude, Eotl.”lm order to supc):press t_he stﬁcondtelicttr_ostatlc
location in phase space can be estimated fipmd—¢) ~ wave-particle resonance. Comparing the perturbation am-

0. This leads to an approximate expression, valid to ze litudes of the electrostatic wave and the stationary mode,
order. for the action at the'" resonance ' or I = I», we can obtain an approximate value gy as

I, = (n* —1)/2, n>2. (2 Avwv1+2hL \/}_'_%JZ(]“/E)_ 6)

Eop =
Forn = 1 the above relation is no longer valid because for 2
small, terms proportional tal,, cannot be disregarded in Although at first glance the resonance suppression, as it is
d,0 [4,5], leading to several changes in the particles motiopresented here, seems to lead to a complete cut out of the
This case will be treated in detail in the next sub-section. resonance, it actually leads to much more involved effects

These resonances are of the pendulum type, presentiagoe discussed next.
n hyperbolic fixed points and elliptic fixed points appear-  To better understand the effects of the resonance sup-
ing for nd = 2mmx, with m < n an integer. The maximum pression, one can analyze the dynamics of the particles near
action excursion arounfj, for particles trapped in the res- the second resonance by studyingdiyaamics of the fixed
onance is given by points[6] of the island ag is varied. In order to do so,
let one write gpendulum — like Hamiltonian , now tak-
A1t = 2, /F/G = 2¢/n3 Ay, J,(k\/2I,). (3) ing into account the influence of the stationary mode and
B. Non-Pendulum-Like Electrostatic Resonance also _keepmg linear terms djf:. I- I? in the pertyrpatlon.
A . The importance of the inclusion of linear termdiwill be

s quoted before, in the low energy case we cannot ne- L

. . apparent. The Hamiltonian takes the form

glect wave terms even in zero order calculation and par-
ticle trajegtorles significantly dlﬁer from a pendular one. B2 ([A’ 9) = (G/2) P2 [Ay(ao + a1 f)
To see this we analyze the Hamiltonian (1) disregarding ~ B+ 8 f)] (26) )
the extraordinary mode and taking into account the leading e 14)]cos

contributions for/ S1. The important term in the SUM- \yheren,; and g; are the coefficients of the Taylor expan-
mation (1) is the one wit = 1. Performing a time- sion, around.,, of J,(kv/2I) and ofI/v/T + 21, respec-
removal canonical transformationd-—¢ — 6, I — I  yely. Usual Fixed Points Usual pendulum-like fixed
andH — hY) = H — T - the Hamiltonian assumes the points 7FP) appear for20prp = mr and lypp =
form —5 (Aya1 —ep1)/G, wherem = 1,2 ands = cos(mm) =

hO(1,0) = V1421 — I + Ay Ji(kV2I) cosf. (4) F1.1n qrder to analyze their s.tabilit.y, one cglculates the
matrix eigenvaluedy rp of the linearized motion around

This Hamiltonian has been extensively studied in the limifhe ;7 7 p's. If the eigenvalues are real the surrounding or-
I < 1in Ref. 7. Trajectories described by (4) may bejts have an expanding direction and a contracting direc-
either trapped or untrapped. Trapped ones present a triay thus thd/ F' P is hyperbolic. Otherwise, the surround-

gular shape instead of the typical pendulum-like one. jng orbits circulate around thé F' P which is therefore el-
max . . . . .

~ Maximum action excursioni"**, for particles trapped |iptic. It is found that unless the stationary mode amplitude

in this resonance is given by is near the optimal one the stability of the&F' P’s is gov-

VI 207 — mar 4 A g (k/2179%) =1, (5) erned by the value of and half of them are hyperbolic,
) ) ) ~half are elliptic. Fore small compared to4,, the elliptic
which gives the maximund value on the boundary (wich gnes are those for which = +1, otherwise thes = —1

has finite rotating frequency). Considering a resonanGge stable.

overlapping criterium, one finds that the threshold ampli- |f on the other hands is near its optimal value, such
tude for an = 1 andn = 2 overlapping isd,, ;» = 0.135  that the condition

for kK = 1. However, the introduction of a stationary ex-

traordinary mode reduces second island amplitude, pre- |[Awao — fo| < |(Awar — €61)?/G| (8)

venting the premature overlap and improving the regular ) ) )
energization of particles. is satisfied \y - p is always imaginary and all thg F'P’s

are of the elliptic type irrespective efvalue.
C. Stationary Mode Resonances Extra Fixed Points A more detailed inspection of the

In order to study the resonances caused by the stationayuations of motion fof andg, reveals that an extra set
mode, one taked,, = 0 and expand the Hamiltonian (1) of fixed points, which shall be calleB ' P, may appear.
for smalle. Considering only first order terms one realizedf the condition (8) holds, a different set of real roots of
that the only perturbing term that resonantly interact witlthe motion equations are found foprp = —(Apap —
the particles is the one containing the harm@fie- t. This  e3;)/(Awar — €61) and20gpp = cos 1[G (Apap —
stationary wave-particle resonance is a pendulum-like one3;) /(A a1 — €31)?]. For increasing these points are
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of the fixed points is shown in detail in Fig. 1. By means

of a Newton-Raphson algorithm [8] the dynamical periodic

orbits are followed and their linear stability determined as

one varieg. Stable periodic orbits are represented by solid

lines, while unstable ones by dotted lines. One can no-

tice a great agreement between the fixed point dynamics

presented in this figure and that described in Sec. 4. The

resonance suppression interval (the interval of existence of

the EF P’s) is approximately € [0.041,0.053] which is

in good agreement with the predicted optimal value.

Now let us turn to the case of higher wave amplitude,
where large acceleration of initially low energy particles is
expected to occur. In Figs. 2(a) and 2(b), it is compared the
Poinca€g plots of a system without and with the stationary
mode, respectively. The amplitudeds, = 0.4. Fore =0
(Fig. 2(a)) a completely chaotic phase-space is presented.
All major stable fixed points of both the first and second
resonant islands have already undergone infinite cascades
of periodic doubling and are not present. In fact, no struc-
ture is apparent anymore. One can expect some relatively
fast particle diffusion for this deep stochastic regime.

On the other hand, in Fig. 2(b), when the stationary
mode is turned on with an optimal amplitude= ¢,, =
1.544 x 10! the Poincae plot is dramatically changed.
Some stable fixed points of the first two islands are present
again. The whole structure of the first non-pendulum is-
land is restored, which leads to high regular acceleration of
initially low energy particles.



