IMPEDANCES AND POWER LOSSES FOR AN OFF-AXISBEAM

Sergey S. Kurennoy
Physics Department, University of Maryland, College Park, MD 20742, USA

Abstract

A method for calculating coupling impedances and power
lossesfor off-axisbeamsisdevel oped. Itisappliedto cal cu-
lateimpedances of small localized discontinuitieslikeholes
and dots, as well as the impedance due to afinite resistiv-
ity of chamber walls, in homogeneous chambers with an ar-
bitrary shape of the chamber cross section. The approach
requires to solve atwo-dimensiona e ectrostatic problem,
which can be easily done numerically in the genera case,
whilefor some particular cases analytical solutionsare ob-
tained.

1 INTRODUCTION

The beam-chamber coupling impedances, as well as power
losses dueto afinite conductivity of the chamber wall, may
depend essentialy on the beam positioninside the chamber.
Whilefor thepower lossinacircul ar pipethisdependenceis
well-known [1], devel oping an approach working for other
chamber cross sections seems to be worthwhile.

In the present note, we consider the problem for the vac-
uum chamber with an arbitrary but constant cross section,
and calculate, for an off-axis beam, the coupling impedance
dueto either resistivewall or asmall localized discontinu-
ity, likeahole. Anaytical resultsare presented for circular
and rectangular cross sections.

2 LONGITUDINAL IMPEDANCE

Let usconsider an infinitecylindrical chamber with an arbi-
trary cross section S. The z axisisdirected a ong thecham-
ber axis, an ultrarel ativistic point charge ¢ moves parallel to
theaxiswiththetransverse offset @ fromit. A small discon-
tinuity (e.g., ahole) located on the chamber wall at the point
(5, z = 0), contributes as an inductance to the longitudinal
coupling impedance [2, 3]

Z(k; @) = —ikZoey(a) (¥ — x) /2, D

where Z, = 1207 Ohmsistheimpedance of freespace, k =
w /¢, and ¢ and x are magnetic and electric polarizabilities
of thediscontinuity . The dependence on the beam position,
aswell as on the hole positionin the cross section, isvia

e (@) = = Y k% (@) Ve B) @

which ismerely the normalized el ectrostatic field produced
at the hole location by a filament charge displaced from

the chamber axis by distance a@. It is expressed in terms of
eigenvaluesk?, . and orthonormalized eigenfunctions (EFs)
enm (7) Of the 2D boundary problemin S:
(Vz—i—kim)enm:O; e”m|35:0‘ 3
We denote and # the outward normal and tangent unit vec-
torsto the boundary 85 of the chamber cross section S, so

that {2, 7, 2} form a right-handed basis. One should note
the normalization condition

f dle, =1, (4)
a8

where integration goes along the boundary 4.5, which re-
flects the Gauss law. It follows from the fact that Eq. (2)
gives theboundary valueof €, (@) = —V&(7 — @), where
®(# — a) isthe Green function of boundary problem (3):
V2®(F —d) = —§(¥ — a). For the symmetric case of
an on-axis beam in a circular pipe of radius b from Eq. (4)
immediately followse, (0) = 1/(2xb).

Likewise, afiniteresistivity of the chamber wall leads to
the resistive impedance per unit length of the chamber, e.g.

(4],

@)/ L=20) § ad@,  ©

o5
where the surface impedance Z, (k) is equa to Zoké/2
when skin-depth é is smaller than the wall thickness.
Therefore, the problem of the impedance dependence
on the beam position is reduced to evaluating e, (@), cf.
Egs. (1) and (5). It can be performed anaytically for smple
cross sections when the EFs are known, or numericaly ina
genera case, applyingany 2D electrostatic code and impos-
ing (4) for normalization of a numerica solution.

3 BEAM-POSITION DEPENDENCE
3.1 Circular Chamber

Using known eigenfunctions (e.g., [5] or see [6]) for acir-
cular cross section of radius b, we sum up in Eq. (2) to get

1 b? — a2

(ad) = — . 6
ev(@) 2xb b% — 2abcos(pq — ¢n) +a? ©)

Here a isthe beam offset, ¢, o5 are azimuth positions of
the beam and hole. Result (6) coincideswiththeknown dis-
tribution of the wall current, e.g. [7]. Figure 1 shows the
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Figure 1: Impedance of a hole in circular pipe versus az-
imuth angle ¢ = ¢, — @5 between beam and hole (in ra-
dians) for different beam offsetsa/b = 0.1 (short-dashed),
0.25, and 0.5 (long-dashed). Z = 1 correspondstoa = 0
(on-axis beam).

beam-position dependence of the holeimpedance (1). Inte-
grating in (5) yields the well-known beam-position depen-
dence for the power loss, e.g. [1],

1 b2 +a?
dle2(@d)= — ——. 7
\%9\5 eV (a) 27rb b2 _ a2 ( )

3.2 Rectangular Chamber

Theeigenvaluesand EFsfor arectangular chamber of width
w and height h are well known, seein[5] or [6]. Let ahole
belocated inthe sidewall at ¢ = w, y = yp. Then from
Eq. (2) for the beam offset @ = (z, y); (Jz| < w/2, |y| <
h/2) fromtheaxisat (w/2, h/2) follows

e, (@) = % Z(—l)” sin mx

n=0

cos (2n + 1)wy sinh[(n + 1/2)w(w + 22)/h] )
h sinh[(2n + 1)rw/h]

> 2nwy 2nwy
1\ ho . <
+ ng_l( )™ sin - sin .

sinh[nw(w + Zx)/h]]
sinh[2nrw/h) '

Despite a rather long expression, this series is fast conver-
gent and convenient for evaluations, and it looks much sim-
pler for a centered beam, withz = y = 0, cf. [3]. Fig-
ure 2 showsthat theimpedanceincreases significantly asthe
beam is displaced closer to the hole.

For integrated e2 we obtain

4
f dle2(@) = —
853 w n=0

sinh?[(n + 1/2)7(h + 2y)/w]
sinh?[(2n + 1)7h/w]

oQ

2 1
3 cos? EnEITT
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(9)
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Figure 2: Impedance of ahole in the middle of square-pipe
wall (yn/h = 1/2) versushorizontal beam offset for differ-
ent vertical beam offsets y/h = 0 (short-dashed), 0.1, 0.2
and 0.3 (long-dashed). For an on-axisbeam Z = 1.
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Figure 3: Power lossin square pipeversus horizontal beam
offset for different vertical beam offsets y/h = 0 (no off-
set, short-dashed), 0.2, 0.3, and 0.4 (long-dashed). R = 1
corresponds to an on-axis beam.

w sinh?[2n7h /w]
+ {z <y weh}.

n i sin? 2nwa sinh®[nx(h + 2y)/w]
n=1

An example of asquare pipeisillustratedin Fig. 3.
For acentered beam, i.e. ¢ = y = 0, it reduces to

?{ dl e2(0) = 1 z:cosh_2 (2n+ rh + {w < h},
88 w

2w
(10)
the result obtained in [4], which was also expressed in a
closed formin terms of elipticintegrals[8].

n=0

4 ON TRANSVERSE IMPEDANCE

The longitudinal and transverse wake functions are rel ated
by Panofsky-Wenzel theorem

VW(z,8) = —Wi(z,d). (11)



Thelongitudinal wake function corresponding to theinduc-
tive impedance (1) of the holeisW(z,d) = & (z)F(a),
where F(@) = Zoe2(a)(¢ — x)/2. Together with Eq. (11),
it implies W, (2,@) = 6(z)V F(&), and the monopole
transverse impedance defined as the Fourier transform of
V_[}J_(Z,(_I:) inT=z/cis

P —x
2

Fmon (k&) = %ﬁF(&):ZO Vel(d). (12)
Defined in such away Z7*°* has dimension of Ohms, and
can be easily calculated when e, (&) isfound, e.g. Egs. (6)
or (8). In an axisymmetric pipe, ZT"” =0, eg.[1], which
formally followsfrom the fact that Z;,, 4 isindependent of
the beam position in such a case. However, presence of a
hole breaks this symmetry, so that ZT"” does not vanish
even on the axis. For example, for acircular chamber with
ahole
Y—xr

472p3
where h isaunit vector from the axis toward the hole. The
presence of a second, symmetric hole (or afew of them) re-
stores the symmetry, and this effect disappears.

The transverse kick obtained by atest charge ¢; which
follows, at distance z > 0, theleading charge g, is

7™ (k,0) = Zo (13)

PL(z,@) = %WL(z,a) - qtcia(z)v"p(a) .

(14)

As an example, Fig. 4 shows the direction and magnitude
of the monopole impedance and corresponding transverse
kick in acircular pipe. For arectangular chamber, the pic-
tureissimilar. Theresult (14) looks suspiciousdueto 6(z),
which means there is no influence on any test charge with
z > 0, while sdlf-influence of the source charge diverges.
One should attributethisunphysical behavior to the approx-
imationsused: (i) point-likediscontinuity, (ii) ultrarel ativis-
tic charge, and (iii) instant induction of effective dipoleson
the hole. A rigorous approach, taking into account 5 <
1 and a finite hole size, would lead to a more appropri-
ate longitudina dependence, although calculations will be
certainly complicated. An involved direct calculation (us-
ing the method of the second paper of Ref. [2], again with
B = 1) of theintegrated transverse force acting on an on-
axis charge passing aholein acircular pipeleadsto diver-
gent sumswhich, however, would be natural to put equal to
zero'. Anyway, thisquestion remains open.

The more usua dipol e transverse coupling impedance in
the chamber with a hole, eg. [3, 9, 6], reflects the influ-
ence of a couple of opposite-charged particles with trans-
verse offsets (5, —5) on atest charge with offset ¢:

7ok, 5 0) = iz, X @8 — e g gy
2 2s
(15
where the limit § — ¢ — 0 is usualy assumed. If instead
oneconsiderst — 0 whilekeeping 5’ = @ finite, we get cor-
rections to the transverse dipole impedance. For example,

1Remark dueto R.L. Gluckstern
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Figure 4: Direction and magnitude of monopoletransverse
impedance in centra region of circular pipe with a hole at
o = 0 (z = b, y = 0) versus beam position, normalized
to that magnitude for an on-axis beam.

inacircular pipe(e = a/b < 1)

D
_ZZOW h cos(pq — o) X (16)

Ziip(kv (_1:) =
1—¢2
(1+¢2)% —4e2cos?(pq — 1)
In the limit of @ — 0 it reproduces the known result for
the transverse dipoleimpedance of the hole, thefirst linein
(16), cf. [2, 3]. It corresponds to the deflecting force di-
rected toward (or opposite to) the hole with its magnitude
proportional to the beam offset and depending on beam az-
imuth position ¢, as cos(p, — ¢r). Expanding in powers
of ¢ yields sextupol e term and higher-order corrections:

cos (pa — ¢n) + 2 cos 3(pa — ¢n) + O (54) .

Results for rectangular pipes are obtained in asimilar way
from Eqg. (8) in terms of series.
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