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Abstract

A method for calculating coupling impedances and power
losses for off-axis beams is developed. It is applied to calcu-
late impedances of small localized discontinuities like holes
and slots, as well as the impedance due to a finite resistiv-
ity of chamber walls, in homogeneous chambers with an ar-
bitrary shape of the chamber cross section. The approach
requires to solve a two-dimensional electrostatic problem,
which can be easily done numerically in the general case,
while for some particular cases analytical solutions are ob-
tained.

1 INTRODUCTION

The beam-chamber coupling impedances, as well as power
losses due to a finite conductivity of the chamber wall, may
depend essentially on the beam position inside the chamber.
While for the power loss in a circular pipe this dependence is
well-known [1], developing an approach working for other
chamber cross sections seems to be worthwhile.

In the present note, we consider the problem for the vac-
uum chamber with an arbitrary but constant cross section,
and calculate, for an off-axis beam, the coupling impedance
due to either resistive wall or a small localized discontinu-
ity, like a hole. Analytical results are presented for circular
and rectangular cross sections.

2 LONGITUDINAL IMPEDANCE

Let us consider an infinite cylindrical chamber with an arbi-
trary cross section S. The z axis is directed along the cham-
ber axis, an ultrarelativistic point charge qmoves parallel to
the axis with the transverse offset ~a from it. A small discon-
tinuity (e.g., a hole) located on the chamber wall at the point
(~b; z = 0), contributes as an inductance to the longitudinal
coupling impedance [2, 3]

Z(k;~a ) = �ikZ0e
2

�(~a ) ( � �) =2 ; (1)

whereZ0 = 120�Ohms is the impedance of free space, k =

!=c, and  and � are magnetic and electric polarizabilities
of the discontinuity . The dependence on the beam position,
as well as on the hole position in the cross section, is via

e�(~a ) = �

X
s

k�2s es(~a )r�es(~b ) (2)

which is merely the normalized electrostatic field produced
at the hole location by a filament charge displaced from

the chamber axis by distance ~a. It is expressed in terms of
eigenvalues k2nm and orthonormalized eigenfunctions (EFs)
enm(~r) of the 2D boundary problem in S:

�
r
2 + k2nm

�
enm = 0 ; enm

��
@S

= 0 : (3)

We denote �̂ and �̂ the outward normal and tangent unit vec-
tors to the boundary @S of the chamber cross section S, so
that f�̂; �̂ ; ẑg form a right-handed basis. One should note
the normalization conditionI

@S

dl e� = 1 ; (4)

where integration goes along the boundary @S , which re-
flects the Gauss law. It follows from the fact that Eq. (2)
gives the boundary value of ~e�(~a ) � �~r�(~r �~a ), where
�(~r � ~a ) is the Green function of boundary problem (3):
r
2�(~r � ~a ) = ��(~r � ~a ). For the symmetric case of

an on-axis beam in a circular pipe of radius b from Eq. (4)
immediately follows e�(0) = 1=(2�b).

Likewise, a finite resistivity of the chamber wall leads to
the resistive impedance per unit length of the chamber, e.g.
[4],

ZL(k;~a )=L = Zs(k)

I
@S

dl e2�(~a ) ; (5)

where the surface impedance Zs(k) is equal to Z0k�=2

when skin-depth � is smaller than the wall thickness.
Therefore, the problem of the impedance dependence

on the beam position is reduced to evaluating e�(~a ), cf.
Eqs. (1) and (5). It can be performed analytically for simple
cross sections when the EFs are known, or numerically in a
general case, applying any 2D electrostatic code and impos-
ing (4) for normalization of a numerical solution.

3 BEAM-POSITION DEPENDENCE

3.1 Circular Chamber

Using known eigenfunctions (e.g., [5] or see [6]) for a cir-
cular cross section of radius b, we sum up in Eq. (2) to get

e�(~a ) =
1

2�b

b2 � a2

b2 � 2ab cos('a � 'h) + a2
: (6)

Here a is the beam offset, 'a; 'h are azimuth positions of
the beam and hole. Result (6) coincides with the known dis-
tribution of the wall current, e.g. [7]. Figure 1 shows the
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Figure 1: Impedance of a hole in circular pipe versus az-
imuth angle ' = 'a � 'h between beam and hole (in ra-
dians) for different beam offsets a=b = 0.1 (short-dashed),
0.25, and 0.5 (long-dashed). Z = 1 corresponds to a = 0

(on-axis beam).

beam-position dependence of the hole impedance (1). Inte-
grating in (5) yields the well-known beam-position depen-
dence for the power loss, e.g. [1],I

@S

dl e2�(~a ) =
1

2�b

b2 + a2

b2 � a2
: (7)

3.2 Rectangular Chamber

The eigenvalues and EFs for a rectangular chamber of width
w and height h are well known, see in [5] or [6]. Let a hole
be located in the side wall at x = w; y = yh. Then from
Eq. (2) for the beam offset ~a = (x; y); (jxj � w=2; jyj �

h=2) from the axis at (w=2; h=2) follows

e�(~a ) =
2

h

"
1X
n=0

(�1)n sin
(2n+ 1)�yh

h
�

cos
(2n+ 1)�y

h

sinh[(n+ 1=2)�(w + 2x)=h]

sinh[(2n+ 1)�w=h]
(8)

+

1X
n=1

(�1)n sin
2n�yh

h
sin

2n�y

h
�

sinh[n�(w+ 2x)=h]

sinh[2n�w=h]

�
:

Despite a rather long expression, this series is fast conver-
gent and convenient for evaluations, and it looks much sim-
pler for a centered beam, with x = y = 0, cf. [3]. Fig-
ure 2 shows that the impedance increases significantly as the
beam is displaced closer to the hole.

For integrated e2� we obtain

I
@S

dl e2�(~a ) =
4

w

"
1X
n=0

cos2
(2n+ 1)�x

w
�

sinh2[(n+ 1=2)�(h+ 2y)=w]

sinh2[(2n+ 1)�h=w]
+ (9)
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Figure 2: Impedance of a hole in the middle of square-pipe
wall (yh=h = 1=2) versus horizontal beam offset for differ-
ent vertical beam offsets y=h = 0 (short-dashed), 0.1, 0.2
and 0.3 (long-dashed). For an on-axis beam Z = 1.
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Figure 3: Power loss in square pipe versus horizontal beam
offset for different vertical beam offsets y=h = 0 (no off-
set, short-dashed), 0.2, 0.3, and 0.4 (long-dashed). R = 1

corresponds to an on-axis beam.

+

1X
n=1

sin2
2n�x

w

sinh2[n�(h+ 2y)=w]

sinh2[2n�h=w]

#

+ fx$ y; w $ hg :

An example of a square pipe is illustrated in Fig. 3.
For a centered beam, i.e. x = y = 0, it reduces toI
@S

dl e2�(0) =
1

w

1X
n=0

cosh�2
(2n+ 1)�h

2w
+ fw$ hg ;

(10)
the result obtained in [4], which was also expressed in a
closed form in terms of elliptic integrals [8].

4 ON TRANSVERSE IMPEDANCE

The longitudinal and transverse wake functions are related
by Panofsky-Wenzel theorem

~rW (z;~a ) =
@

@z
~W?(z;~a ) : (11)



The longitudinal wake function corresponding to the induc-
tive impedance (1) of the hole is W (z;~a ) = �0(z)F (~a ),
whereF (~a ) = Z0e

2

�(~a )( ��)=2. Together with Eq. (11),
it implies ~W?(z;~a ) = �(z) ~rF (~a ), and the monopole
transverse impedance defined as the Fourier transform of
~W?(z;~a ) in � = z=c, is

~Zmon
?

(k;~a ) =
1

c
~rF (~a ) = Z0

 � �

2
~r e2�(~a ) : (12)

Defined in such a way ~Zmon
?

has dimension of Ohms, and
can be easily calculated when e�(~a ) is found, e.g. Eqs. (6)
or (8). In an axisymmetric pipe, ~Zmon

?
= 0, e.g. [1], which

formally follows from the fact that Zlong is independent of
the beam position in such a case. However, presence of a
hole breaks this symmetry, so that ~Zmon

?
does not vanish

even on the axis. For example, for a circular chamber with
a hole

~Zmon
?

(k; 0) = Z0
 � �

4�2b3
~h ; (13)

where ~h is a unit vector from the axis toward the hole. The
presence of a second, symmetric hole (or a few of them) re-
stores the symmetry, and this effect disappears.

The transverse kick obtained by a test charge qt which
follows, at distance z � 0, the leading charge qs, is

~p?(z;~a ) =
qtqs

c
~W?(z;~a ) =

qtqs

c
�(z) ~rF (~a ) : (14)

As an example, Fig. 4 shows the direction and magnitude
of the monopole impedance and corresponding transverse
kick in a circular pipe. For a rectangular chamber, the pic-
ture is similar. The result (14) looks suspicious due to �(z),
which means there is no influence on any test charge with
z > 0, while self-influence of the source charge diverges.
One should attribute this unphysical behavior to the approx-
imations used: (i) point-likediscontinuity, (ii) ultrarelativis-
tic charge, and (iii) instant induction of effective dipoles on
the hole. A rigorous approach, taking into account � <

1 and a finite hole size, would lead to a more appropri-
ate longitudinal dependence, although calculations will be
certainly complicated. An involved direct calculation (us-
ing the method of the second paper of Ref. [2], again with
� = 1) of the integrated transverse force acting on an on-
axis charge passing a hole in a circular pipe leads to diver-
gent sums which, however, would be natural to put equal to
zero1. Anyway, this question remains open.

The more usual dipole transverse coupling impedance in
the chamber with a hole, e.g. [3, 9, 6], reflects the influ-
ence of a couple of opposite-charged particles with trans-
verse offsets (~s;�~s) on a test charge with offset ~t:

~Z
dip

?
(k;~s;~t ) = �iZ0

 � �

2

e�(~s )� e�(�~s )

2s
~re�(~t ) ;

(15)
where the limit ~s ! ~t ! 0 is usually assumed. If instead
one considers~t! 0 while keeping ~s = ~a finite, we get cor-
rections to the transverse dipole impedance. For example,

1Remark due to R.L. Gluckstern
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Figure 4: Direction and magnitude of monopole transverse
impedance in central region of circular pipe with a hole at
'h = 0 (x = b; y = 0) versus beam position, normalized
to that magnitude for an on-axis beam.

in a circular pipe (" = a=b < 1)

~Z
dip
?

(k;~a) = �iZ0
 � �

2�2b4
~h cos('a � 'h)� (16)

1� "2

(1 + "2 )2 � 4"2 cos2('a � 'h)
:

In the limit of a ! 0 it reproduces the known result for
the transverse dipole impedance of the hole, the first line in
(16), cf. [2, 3]. It corresponds to the deflecting force di-
rected toward (or opposite to) the hole with its magnitude
proportional to the beam offset and depending on beam az-
imuth position 'a as cos('a � 'h). Expanding in powers
of " yields sextupole term and higher-order corrections:

cos ('a � 'h) + "2 cos 3('a � 'h) +O
�
"4
�
:

Results for rectangular pipes are obtained in a similar way
from Eq. (8) in terms of series.
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