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Abstract

The polarizabilitiesof aring-shaped cut inthewall of an ar-
bitrary thickness are calculated using a combination of an-
alytical, variationa and numerical methods. Theresultsare
applied to estimate the coupling impedances of button-type
beam position monitors.

1 INTRODUCTION

The coupling impedances of a small discontinuity on the
wall of the vacuum chamber of an accelerator have been
calculated in terms of the polarizabilitiesof the discontinu-
ity [1]. The fields scattered by an aperture in the wall can
be approximated by those due to effective eectric P and
magnetic M dipoleswhich areinduced by anincident fields
E}, H! [2]: P, = —xeoEp/2; M, =4 H!/2, wherex
is the electric polarizability and + is the magnetic suscep-
tibility of the aperture, © isthe norma vector to its plane,
and 7 isthe tangential one. When the wavelength of anin-
cident field is large compared to the aperture size, the po-
larizabilities can be found by solving a static problem [3].
The solutions are known for acircular hole of radiusb in a
zero-thicknesswall, » = 8b%/3 and x = 4b®/3 [2], and for
elipticholesinathinwall [3]. Inthecase of athick wall the
polarizabilities have been studied using a variational tech-
nique for circular [4] and for dliptic [5] holes. Some ap-
proximate formulas for lots are compiled in [6].

In this paper, we present resultsfor the polarizabilities of
an annular cut in the perfectly conducting planar wall of an
arbitrary thickness. Such an aperture can serve asamode of
acoax attached to the waveguide, when the wall thickness
islarge. In the case of athin or finite-thickness wall it is
an approximation of an electrode of the button-type beam
position monitors (BPMs). More details on derivation and
solutionscan be found in Ref. [7].

2 INTEGRAL EQUATIONS

We are looking for the field distribution produced by the
aperture (hol€) in a conducting wall of thicknesst¢ with its
midplaneat z = 0 whenitisilluminated by ahomogeneous
static (normal electric or tangential magnetic) field from one
(z > 0) side. Following[8, 4], wesplittheproblemintotwo
parts by decomposing thefar field as Eo/2 + Eo/2 = Eq
forz > 0,and Eq/2 — Eq/2 = 0forz < 0, and con-
sider two separate problems: (i) the wall with the aperture
isimmersed into homogeneousfield Ey/2 — the antisym-

metric problem for the potential w.rt. z «— —z; and (ii)
the far field is directed to the wall from both sides, Fo/2
forz > 0 and —Ey/2 for z < 0, in which case the poten-
tial issymmetric. Solvingthesetwo problemsyieldsy, and
Xa, and gives us the inside polarizability x;n = Xs + Xa»
which defines the effective dipole for the illuminated side
of thewall, z > t/2, and the outsideone, xout = Xs — Xa>
for the shadow side. Likewise, the magnetic polarizabilities
ae 1/)in,out = 1/)5 =+ 1/’(1-

Consider the magnetic problem for an annular cut with
inner radius ¢ and outer radius . It can be reduced
to the integral equation for function g(r), defined by
2H,(7,t/2)/Ho = g(r) cos ¢, (cf. [4] for acircular hole):

b
/ dr'r' g(r")[Kpm (7, ') + Kt (v, 7)) =7, (1)

where the thin-wall part of the kernel
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has aln-singularity a = = y, and the thickness-dependent
part K.,,; isrelated tothefield expansioninsidetheaperture,
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with the upper (lower) line corresponding to the (anti) sym-
metric problem. Here 5 F; is the Gauss hypergeometric
function, A,, are subsequent positive roots of the equation
J1(Ana)Y{(Anbd) — Y{(Ana)J{(And) = 0, Jp(), Ya(w)
are the n-th order Bessel functions of the first and second
kind, and the expansion functions F;, are

tanh
coth

Kme(r,7') =3 Fu(r)Fo(r)A {

Fo(r) = Co [T1(Aa) — Yi(Anr) T1(Ana) /Y7 (Ana)] -
Normalization condition fab rFZ(r) = 1 defines

TAn
Cn = 7
The magnetic susceptibility isexpressed intermsof g(r) [4]
s =" f;’ drr?g(r). A solutiong(r) of Eq. (1) must have
the correct singular behavior near the metal edge: g(r) «
A~ whendistancefromtheedge A =b—r — 00r A =
r—a— 0,wherea = 1/2fort = 0,and« = 1/3 fora
thick wall, assuming 90° edge. The electric problem can be
reduced to an integral equation in a similar way.

Y ab)] 7 (1= 25272) = — 0y}



3 MAGNETIC PROBLEM

For a narrow annular cut (gap widthw = b — a issmall,
w < b) inathinwall theintegral equation has been solved
analyticaly [9], and the magnetic polarizability is

¥ = w2b%a[In(32b/w) — 2] . ©)

It becomes large and closeto that of acircular holefor rela
tively narrow gaps, w/b > 0.1. The physical reason for this
surprising result isthat an incident tangential magnetic field
deeply penetrates even through a narrow annular gap in the
thin wall, and this distortion creates a large effective mag-
netic dipole, comparable to that due to the open hole with
the same radius.

For awide cut, we apply a variationa technique devel-
oped in [4] converting (1) into the variational form

w? [, ede [ ydyg(e)K(2,9)9(y)

¥ [fpl z2dx g(:::)]2

wherez = r/bandy = »/b,and p = a/b, and kernd
K = K, + K. Solution g(z) of Eq. (1) minimizes the
RHS of Eq. (4). We arelooking for asolutionin the form of
aseriesg(z) = Y o~ cngn(x) With unknown coefficients
¢n. The choice of functions g, () is defined by the near-
edge behavior of the solution:

[(1-2)(z—p)]™", (5)
Pia[(22—p—1)/(1—p)] fork > 1,

N

go(z) =
ge(z) =

wherea = 1/2 and P, (z) = T, (=) are Chebyshev's poly-
nomialsof thefirst kind for a zero-thicknesswall, whilefor
athickwal & = 1/3 and P,(z) = C’}L/G(x) are Gegen-
bauer’s polynomias. The choice of the polynomiasisre-
lated to their orthogonality to the singular part go() of the
solution. Denoting d,, = fpl dzzig,(z) and a, = cpdn,
we define matrix

Kkn:/ wdrc/ ydy gr () K (2, ¥)9n (y)/(drdn) ,
14 14 (6)

and convert Eqg. (4) into the following form

b8 . Ek,n ar Kinan
4 (X an)”

Minimizing the RHS yields ¢ = #b*>>, (K1), .
where matrix K ! isthe inverse of the matrix K, Eq. (6).
Thefurther procedureisstraightforward: nthiteration (n =
0,1,2,...) corresponds to the matrix (6) truncated to the
size(n+ 1) x (n+ 1). Integrationsand matrix inversions
have been carried out using Mathematica

For the thinwall, polarizability ¥ = t;, = ¥oye VEISUS
thecut widthisshowninFig. 1 (dashed lin€). Theanalytical
solution (3) works well for narrow gaps, w/b < 0.15. The
process converges in three iterationsfor the whol e range of
thecut width0 < w/b < 1.
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Figure 1: Inside magnetic polarizability (in units of 52) of
annular cut versus its relative width w /b for thin (dashed)
and thick (solid) wall. Three dash-dotted curves are for
fixed ratiot/w = 0.5; 1; 2 (from top to bottom). The dot-
ted line correspondsto the circular holein athinwall.

For the case of athick wall an asymptotic of ¢ for anar-
row gap can be obtained anayticaly using properties of
eigenvaues: A\,b — w(n — 1)/6 forn > 2, and A1b ~
1+ é/2whené = w/b — 0. Keeping only go(z) and
leading term [ [ g(z) F1(x)]? o 6~%/3 in Eq. (4), we get
in = 2mb%w. Comparison to the results of direct varia-
tional calculations for the thick wall in Fig. 1 (solid line)
shows that this asymptotic works only for very smal w/b.
Variational calculations are similar to those for the zero-
thickness case, except that one has to truncate the series
(2). We have kept up to 6 terms in this series, and conver-
gencewas fast enough, requiringonly upto 3to 4 iterations.
Theinsidemagnetic polarizabilitiesreach their “thick-wall”
asymptotic values approximately at ¢t /b = 2, whilethe out-
side ones decrease exponentialy with thickness increase,
seepicturesin[7]. Inthelimitw/b — 1 our resultscoincide
with thosefor a circular hole[4].

4 ELECTRIC PROBLEM

For anarrow annular cut w < b, the electric polarizability
can be approximated by that of a narrow (yet bent) slot of
width w and length =(b + a) > w, i.e, x ~ x=x(b + a),
where ¥ denotes the electric polarizability per unit length
of thedlot. The value of ¥ can be obtained using conformal
mapping for a 2-D electrostatic problem: ¥ = ww?/8 for
zerowall thickness, and ¥ = w?/x for athick wall, ¢ >> w,
see[6]. Inthisway, we have two anaytical estimatesfor the
electric polarizability of a narrow annular cut:

1

X m?w?(b+a)/8 forthinwal, (8)

Xin w?(b+ a) for thick wall . 9)
For narrow gapstheel ectric polarizability issmall compared
to the magnetic one. The reason isthat the normal electric
field does not penetrate far enough through the narrow gap,
unlikethetangential magneticfield on the parts of theannu-
lar cut which are parallel to itsdirection. The outside el ec-
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Figure 2: Inside eectric polarizability (in units of %) of
annular cut versus its relative width w/b: anaytica es
timates (8) for thin (short-dashed) and (9) for thick wall
(long-dashed) and corresponding numerical results (thick
dots). The dotted lineisfor the circular holein athin wall.

tric polarizability of the gap in athick wall can be estimated
aS Xout = wi(b + a) exp(—nt/w).

Both the el ectro- and magnetostatic problems under con-
sideration can be solved numerically. With boundary con-
ditions which ensure a given homogeneous field far from
theaperture plane, an electric or magnetic potential could be
computed. Unfortunately, for themagnetic problem, aswell
asforan arbitrary-shaped aperture, thisapproach requires 3-
D codes. However, our electric problemiseffectively a2-D
one duetoitsaxia symmetry. On the other hand, an appli-
cation of the variational techniqueto the e ectric problemis
complicated sinceitszero-thicknesskernel ismore singular.
That iswhy we choose the numerical approach for thewide
gap applying the POISSON code.

Theresultsare shown in Fig. 2. Anaytical estimates (8)
and (9) work amazingly well even for very wide gaps. We
intentionly did not interpolate the numerical dotsin Fig. 2,
otherwise it would be difficult to distinguish the numerical
curves from those given by formulas (8)-(9); they overlap
except in the region w/b > 0.85. Numerical resultsfor fi-
nitewall thickness¢/w = 1 and event/w = 0.5 are very
closetothosefor avery thick wall (the lower curve).

5 BEAM COUPLING IMPEDANCES

The beam-chamber coupling impedances can be obtained
using formulas from [1] and polarizabilities found above.
An annular cut of radius & and width w on the wall of a
circular pipe of radius» > b produces the longitudinal
impedance

Z(w) = —1Zow (Yin — Xin) (871'261"2)_1 ,

where (¢;n, — x4n)/b% isplotted in Fig. 3. For other cross
sections of the vacuum chamber, the transverse impedance,
and Re Z, see [10] and references therein. As seen from
Fig. 3, theimpedance of anarrow cut inathinwall islarger
than (but less than twice) that of acircular hole with radius
b, and tends to the last onewhen w — b.
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Figure 3: Difference of inside polarizabilities (in units of
b3) of annular cut versusitsrelativewidth w /b for different
wall thicknessest = 0; w/2; w; 2w, and ¢ > w (from top
to bottom). The dotted line correspondsto the circular hole
inathinwall, (¢ — x)/b® = 4/3.

As an example, we estimate the broad-band impedance
for BPMs of the PEP-11 B-factory at SLAC and compare it
with 3-D numerical smulations[11]. The BPM has 4 but-
tons of inner radiusa = 7.5 mm, gap widthw = 1 mm,
at the distance » = 30 mm from the chamber axis. In fact,
the PEP-11 chamber has an octagonal cross section, but we
approximateit by acircular pipewith radius 30 mm. While
thewall thicknessisnot specifiedin [11], itisusualy afew
timeslarger than the gap width. The estimate (10) givesthe
inductance L = 0.06 nH per BPM (Z = —iwL), when the
thicknessistakent = 2w = 2mm, and L = 0.032 nH
for avery thick wall, ¢ > w. The numerica result [11] is
L = 0.04 nH per BPM, in an agreement with our estimate.
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