
LNLS CONTROL SYSTEM

P.F. Tavares, A.R.D. Rodrigues*, R.H.A. Farias, G.S. Franco, L.C. Jahnel, G. Monteiro and J.R.
Piton, LNLS, Campinas, SP 13081-970 BRAZIL

The control system of the LNLS Synchrotron Light
Source facility is presented. The system is composed of a
number of local controllers based on the Zilog Z80 CPU,
which are connected through a 2 Mbps serial line
(running an in-house developed communication protocol)
to concentrators which provide the interface to
microcomputers, which are responsible for the high level
user interface. The high level software is developed
using object-oriented techniques and visual design tools,
whereas the low level software is mostly assembly
language.

1. INTRODUCTION

LNLS is a materials science research facility built
around a synchrotron radiation source based on a
1.2 GeV electron storage ring currently under
commissioning. The storage ring and the injection system
(a 120 MeV Linac) are described elsewhere1.

In this paper we describe the low and high level
software and hardware comprising the machine control
system. The system has been in operation since December
1995, when commissioning of the injector started with
the preliminary version of the high level software. System
performance and reliability have improved steadily since
then and have now reached the design specifications,
demonstrating that the initial conceptual design was
basically sound.

2. Low-Level Hardware and Software

The Control System is divided in three levels (Fig.
1). The equipment level is the lowest one, in direct
contact with the equipments being controlled. It is formed
by home-made Local Controllers (LOCO), based on the
Z80 microprocessor. A LOCO crate is composed of a
serial and a CPU cards in addition to control cards
attached directly to the equipments. The intermediate
level, called distribution level, is formed by a
Concentrator, which is composed of various serial cards.
Each of these serial cards is connected to a number of
LOCOs forming a control system network segment. Each
LOCO is called a node of the control system network. All
data coming from the local controllers are condensed in a
Dual-Port Memory device (DPM) in the serial card.

Finally, the user interface level is represented by a
low cost PC connected to the concentrator. The
communication between the concentrator and the PC is
carried out via a PCLOCO card which is installed in one

of the ISA bus slots of the PC and is directly connected to
the DPM of the various nets connected to the
concentrator rack.

Local Controller
The interface between the Control System and the

equipments in the facility is managed by the local
controllers. The control interfaces in their lowest level
at the equipment level have also been developed at
LNLS, using TTL digital signals and analog signals in
the ranges of 0 V to +10 V and -10 V to +10 V, with 12
or 16 bits resolution.

The software for the local controller is written in
assembly language and is standard for all controllers,
regardless of the specific equipments controlled.. Thus,
all controllers run strictly the same software, which
makes the general maintenance simpler. This

Concentrator:
LOCO rack with
serial cards

User Interface Level
(Control Room)

PC PENTIUM

PCLOCO Card
PCLOCO - SINGLOCO

Communication
Flat Cable <1.5 m

Distribution Level
(Control Room)

Equipment Level
(Distributed)

Equipment

Nodes

Serial Cards

SINGLOCO Card

Serial Cards → DPM

Local Controller
Rack with serial
and control cards

Serial Card→ DPM

CPU Card

Control cards

Serial Communication 2 Mbps
(RG58 coaxial cable)

LOCO-Equipment Communication
(Flat Cable, coaxial, multi-vias)

Figure 1 - Schematic layout of the Control System
Structure

standardization required the implementation of
algorithms that allow the Local Controller’s CPU to
automatically recognize the cards being controlled and to
follow the appropriate management procedures.
Distributed databases are thereupon not necessary.

The card recognition procedure is carried out during
the boot operation by means of CPU calls to
preestablished input addresses, which return an
indication of whether or not a card exists as well as its
type. The CPU then allocates the memory necessary for
the card and calls the specific management routines. The
allocated memory is mirrored in the serial
communication card responsible for the final data
exchange with the higher levels of the control system

Once the boot is completed, the CPU starts the data
transmission from the equipment control cards to the
serial card, and periodically checks the serial card for the
existence of fresh data to be sent to the equipments. It
must be remarked that the local controllers do not have
any information about the equipments which are being
controlled but only about the cards which are being used.
This increases the flexibility as regards modifications
which may be eventually necessary in the control system,
since it requires only updating a database in the control
computer. On the other hand, the accidental insertion or
removal of a card from a Local Controller would cause
data transfer to the higher level control software to fail.
Algorithms for the detection of such faults are currently
being implemented.

Communications
A 2 Mbps serial card is responsible for autonomously

transmitting data between the Local Controllers
(equipment level) and the Concentrators (distribution
level). The CPU processing time is then employed
exclusively in the control of the equipments. Data
transfers within the Local Controller use a Dual-Port
memory device. The serial card collects the data to be

sent to the higher levels of the control system and makes
those received from the higher levels available to the
CPU. Data are periodically collected by the concentrator,
which requests data from each node in the control system
network individually, thus preventing collision events in
the transfer process. In the concentrator, data from each
node are stored at preestablished addresses of a DPM and
can then be accessed by the PCLOCO card. From the
high level software point of view acting upon an
equipment means reading or writing a byte at a specific
I/O position of the PC port.

3. High Level Software

The high level software layer implements the user
interface and machine physics algorithms, and manages
static and dynamic machine parameter databases.

The user interface is implemented on Intel PCs
running Windows95 with the Pascal-like object-oriented
visual-design environment DELPHI. The choice of the
development environment was dictated by time
constraints regarding both performance requirements and
programming ease, allied to the user-friendly interface
provided by Windows applications.

The user interface comprises a series of modules
(Pascal units defining a window or Form) which allow
the operator to access every single equipment in the
facility. All these modules share a common dynamic
database (implemented as two vectors of bytes in memory
- one for the values sent to the local controllers and the
other for values read from the local controllers), which
contain all information on the status of the machine (Fig.
2). This dynamic database is created, initialised and
maintained by an independent application (the so called
SERVER) which is permanently running in the
background and which communicates with the various
user-interface modules via DDE (Dynamic Data
Exchange) links. Thus, several independent interface

DDE Link
DPM

Communication

Server
Low level

communication
DPM

Client
Module

User Interface
High Level Program

Dynamic Data Table:
sent to the Equipment

Dynamic Data Table:
read from the Equipment

PCLOCO

SINGLOCO

SERIAL

PC Concentrator

client request

Dynamic Tables
Addresses

Commands

Figure 2 - Schematic layout of the high level software configuration.

modules (even modules belonging to different
applications, perhaps running in different machines) can
access the same dynamic database via the server. It is the
server’s task to interact with the lower levels of the
control system software and hardware: it permanently
reads the status of all equipments in the system and
answers to requests from its clients to send new settings
to the local controllers or to prepare special
communication protocols (such as in preparing do dump
a ramping curve before ramping the machine to high
energy).

The DDE Server is a fairly short application written
with performance in mind and contains no knowledge of
the inner workings of the various equipments connected
to the local controllers. In contrast, the client modules
must access various static databases describing detailed
properties of the controlled equipments such as
conversion constants, calibration curves, etc. The strategy
of dividing the pure user-interface tasks from the actual
communications and control tasks into two independent
concurrent applications proved very useful because it
allowed the many client modules to be divided into
various applications, thus minimising memory limitations
inherent to the Windows environment.

The client modules are divided into 9 applications.
The 3 main applications (LINAC, Transport_Line and
Storage_Ring) contain most of the control windows for
individual equipments in the three subsystems. The
remaining six applications perform the following tasks:
(a) continuously monitor the interlock system, (b)
condition (cycle) the magnets, (c) routine checking of all
control system network nodes and equipments prior to
machine operation, (d) on-line detection of equipment
faults, (e) preparation and management of the ramping
process and (f) management (saving, loading, printing) of
machine configurations.

Some client modules act on groups of equipments
performing simultaneous coupled changes in various
machine settings, according to predefined beam
dynamic's procedures. It is possible, for example, to use a
pair of correctors to adjust independently position and
angle of the beam at the injection point. Pairs of
quadrupoles in the transport line can also be adjusted in
order to empirically match the vertical dispersion
function of the line.

All client modules make heavy use of static databases
which are implemented in the form of Paradox 5.0 tables,
directly accessible from DELPHI programs. Although
this implies a certain performance penalty since table
searches must be performed at run-time to set up
equipment parameters for the interface modules, the
ability to edit these tables on-line (without the need to

recompile the code) has proved to be extremely useful
during commissioning of the system, when some of these
parameters are still subject to frequent changes.

Beam Optics Modules
Standard beam optics simulation tools, such as the

machine optics design code MAD2 as well as in-house
developed orbit correction codes are installed in a remote
UNIX workstation. These beam optics applications can be
accessed from the control room PC’s via front-end
modules developed in DELPHI. The main capabilities of
these front-end modules are: the direct interface with the
main modules of the control system, which allows on-line
acquisition of machine parameters to be fed to the
simulation programs; the user-friendly interface which
eases the manipulation of input files; post-processing
tools which permit fast analysis of the outputs as well as
sending new machine settings to the control system. The
connection between the PC-based codes and the
workstation is accomplished via a LAN running the TCP-
IP protocol.

4. CONCLUSIONS

The control system of the LNLS synchrotron
radiation source has been in operation for six months. Its
reliability and performance have met the design
parameters. Enough flexibility was built into the system
design so as to allow several software tools to be quickly
added to the system during the commissioning stage in
response to demands from the various technical groups
involved in the machine operation.

The present configuration of the Control System
includes a 90MHz Pentium PC and a concentrator which
is connected to 7 network segments making up 305
control boards. There are at present about 3200 control
points dealt with by the control system software.

Most of our network communication problems up to
now have been minimised by redesigning the topology of
the network, minimising the length and number of nodes
of each network (while keeping the number of nodes
constant). Apart from these hardware solutions to such
difficulties, software corrections (in the form of more
rigorous transmission checking routines) are also being
implemented in the serial communication protocol.

5. REFERENCES
* Also IFQSC, Univ. of São Paulo, São Carlos, Brasil
1 A.R.D.Rodrigues et al, LNLS Commissioning and
Operation, these proceedings.
2 F.C.Iselin, The MAD Program, CERN/LEP-TH/88-38.

