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Abstract

 In this paper a feedback system for suppressing fast
head-tail instability is described. The experimental
results of the feedback affecting the current threshold are
presented. The effects of the reactive and resistive
feedbacks on the current threshold are discussed.

1 INTRODUCTION .

The most fundamental limit for the current at the
VEPP-4M facility is presently the vertical fast head-tail
instability. The beam losses is usually observed in a few
tens of milliseconds after injection (this corresponds
approximately to the time of radiation damping). The
threshold current is 10÷12 mA.

The fast head-tail instability occurs when frequency
of the head-tail mode 0 is shifted sufficiently to couple to
the -1 mode. In order to increase an instability threshold
it is usually suggested introduce the reactive feedback to
compensate for the frequency shift of the mode 0.
However, as it follows from experiments [1] its turned
out that the introducing of the pure active negative
feedback increases the threshold current up to
substantially higher values.

This effect can be understandable if one can find the
eigen modes of particle oscillations in the bunch. As it
shown below on simplest two particles model, in the
vicinity of instability threshold these modes are
approximately the same, they have close eigen
frequencies and each mode has the approximately equal
amplitudes of the dipole and quadrupole components.
When switching the negative active feedback an energy
extraction occurs from the eigen modes of oscillations
excited by the head-tail interaction in a bunch through
the dipole degree of freedom, thereby preventing the
instability growth. Such an interpretation is additionally
supported by the experimental data given below.

Some parameters of the VEPP-4M facility are the
following: revolution frequency Frev = 0.82 MHz,
accelerating voltage frequency Frf = 222⋅Frev, radiation
damping time of longitudinal and transverse oscillations
at injection - 35÷60 ms, bunch length - 20 cm, fractional
part of relative frequency of vertical oscillations - 0.57,
relative frequency of synchrotron oscillations - 0.018.

MODE ANALYSIS OF THE

TWO PARTICLE MODEL.

In our consideration we will, partically, refer to
A.W.Chao [2].

Let y1 and y2 be complex amplitudes of the betatron

oscillations of the 1-st and the 2-nd particles.
In the first half period of synchrotron oscillation first

particle is leading and excites by its wake transverse
oscillation of the second one. Due to the resonance
excitation complex amplitude of the second particle at
the time t is

y2(t)=y2(0)⋅ejωt− j⋅W⋅t⋅y1(0)⋅ejωt

Here W - factor defined by wake field induced in
environment by first particle.

After the first half period of the synchrotron
oscillation T/2 complex amplitudes are transformed as
follows (in matrix form)
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where  η = W⋅Ts /2.

In the second half period particles interchange by its
leading and trailing roles so transformation is
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After the whole period we will have
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The stability is determined by eigenvalues of the
transforming matrix. The last are the roots of an equation
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λ2−2 (1−1/2⋅η2)⋅λ+1=0.

The roots of this equation (eigenvalues) are
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As easy can be seen their product is equal to unity
λ1⋅λ2=1.

Secondly,
 λ1,2= 1

if       1 −1/4⋅η2≥0,     i.e.   η≤2 .
At η > 2 module of certain eigenvalue becomes greater
than unity, for instance, λ1> 1, and instability of the

"fast head-tail" type arises.
For design of feedback to increase the threshold of

instability it is useful to find eigenmodes i.e. some
relations between complex amplitudes of transverse
oscillations of two particles belonging to the same
eigenvalue.
  Eigenmodes amplitudes satisfy uniform system of linear
equations

     (1−η2−λ)⋅y
1
   − j⋅η⋅y

2
   = 0

             -j⋅η⋅y
1
−(1−λ)⋅y

2
  = 0

  This system has nontrivial solution if λ is one of

eigenvalue. If it is so this system determines the ratio of
the variables y

1
 and y

2
. From the second equation, for

instance, we have:
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Substituting here eigenvalues we obtain
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The expression in parentheses has the following
properties. Below of the instability threshold (η < 2) its
module is equal to unity, i.e. the oscillation amplitudes of
particle oscillations are equal. At η→0 macro particles
oscillates in the same phase for one mode and in opposite
phase for another mode. If 0<η<2 the phase shift
increases with η, and at η = 2 the both modes merge in
one the phase shift between particles oscillations is π/2.
At further growth of η the phase shift in modes remains
π/2. But oscillation of one mode increase with time and
another decrease (amplitudes of oscillations of particles
are unequal).

One can see from this that near instability threshold
the center of gravity of each mode performs the
oscillations. This oscillations can be detected by pick-ups
and used for suppression of instability by feedback,
resistive, in particular.

 Description of System

 The block diagram of the feedback system over the
vertical dipole oscillations of a beam is given in Fig.1.

Fig.1. Feedback system block diagram.



The 50 Ohm striplines are used as the pickup of
transverse oscillations. The signals from the opposite
striplines are applied to the subtracting transformer
having the input impedance equal to the wave impedance
of striplines that enable us to separate the signals from
the electron and positron bunches. The length of
striplines was chosen in such a way that the their
sensitivity has maximum values in the frequency range
150÷250 Mhz.

The suggested system is made selective with the
frequency conversion. The preliminary processing of
signals is performed at a frequency (222±∆ν)⋅Frev in the
vicinity of the pickup sensitivity maximum and the
formation of frequency characteristics and kicker power
supply at low frequency ∆ν⋅Frev.

The differential signal from the transformer output is
applied to the selective filter tuned at a frequency of
222⋅Frev and then to the frequency converter. The
heterodyne voltage for the converter is a signal from the
accelerating system (Frf=222⋅Frev). In the low frequency
part the feedback system has a filter with a range
0÷0.5⋅Frev, preamplifier, phase shifter, attenuator, and
the power amplifier. The phase is regulated within the
range 0÷2⋅π thus enabling the realization of both the
active and reactive feedback.

A pair of the 50 Ohm diametrically opposite matched
striplines of 1 m length is used as a kicker thus providing
the separate action on the bunches of electrons and
positrons. The power supply of striplines is in series with
the use of the inverter transformer. The inter-lines
maximum voltage is limited by the power of an output
amplifier to the value of 400 V.

Experimental results

The finite dynamic range of the feedback system
poses the limit to the decrement at injection where the
bunch oscillation amplitude is quite large because of
errors in the injection systems. In our case, at a current of
10 mA this value was approximately 0.02⋅Frev and for
low amplitudes of oscillations it could be increased up to
0.06⋅Frev . The coherent tune shift, introduced by
feedback, corresponding to these two modes of operation
was 2⋅π times lower. The eigen coherent tune shift
caused by the bunch interaction with the storage ring
components was 0.012⋅Frev at the same current value.
Unfortunately, this value is larger than that the feedback
could provide, therefore in our experiments we could not

compensate for the eigen coherent tune shift especially
during injection.

Fig.2 shows the dependence of a current captured on
the VEPP-4M of the phase of the feedback circuit (there
is one-turn injection in VEPP-4M). The pure negative
feedback corresponds to the zeroth phase and purely

reactive feedback corresponds to ±900.

Fig.2. Dependence of a captured current of the feedback
phase.

It is seen that the maximum captured current is
achieved at the zeroth phase and it decreases with

nearing to ±900. For obtaining the experimental points at
each phase value the gain in the feedback circuit was
selected in such a way to provide the maximum of
captured current. One should note that the maximum
captured current in our case was limited not by the
feedback capabilities but by the maximum current of
injected bunch. The 1-st curve represents the first run
results, the 2-nd curve - the second run results (after
more careful tuning the injection system). As one can
catch from the figure the maximum captured current
exceeds the thresholds current more than two times.

The results give evidence an efficiency of the active
feedback in the fight against the fast head-tail instability
and can be used at other installation for the development
of similar systems.
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