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1 INTRODUCTION bunch,+Ap,,/ps is the initial maximum relative momen-
! - 2 5 :

Analysis of bunch behaviour under the influence of spac:%\r?oﬁﬁir;??rén the bunch, = 1/7¢ — 1/7* andw is the

. L o . guency.
c_harge or mpluctw_e |mp_edan<_:e in circular machines, be- The equation governing the particle motion has the form
sides numerical simulations, is usually based on two ap-
proaches. The first, dealing with potential well distortion, d?6 b2, ON(0,t) 0 5
uses stationary solutions. Secondly, stability analysis ap- ar? MT - ©
plies perturbation theory, small deviations from stationary ) _ )
solutions being considered. In general there are no regul4f€re wso is the linear synchrotron frequency in the
methods to describe the bunch motion in a self-consistel®W intensity case, and intensity effects for the bunch
way. However, the elliptic distribution function plays a speWith N particles are represented by the parameter
cial role in that solutions can sometimes be obtained in aggR(nimZ) Q2 = (6ne*N)/(xcp,7s) ImZ/n.

+ w20 +

alytic form, [1]- [3]. We will show below that for the particle with initial co-
A self-consistent solution of the Vlasov equation forordinates, f) solutions of (2) can be found in the form

bunch transport with space charge was found for an ellip- o) — 8 )+ oot 3

tic distribution in [4]. Numerical integration of the enve- .( ) 01{1( )+ 0 ‘1{2( ) 3)

lope equation derived there is widely used to analyse the 0t) = Goy(t) +6o52(1), (4)

behaviour of space charge dominated bunches, [S]-[7]. *\yherey,; andys, are unknown functions of time with initial
Below we present closed form analytic solutions defingonditions:y, (0) = 1,(0) = 0,41(0) = 0,4(0) = 1.

ing single particle and bunch motion with time in a machingye suppose for the moment that the Wronskian of this sys-

with reactive impedance, also found for an elliptic distribuie, is constant. then from initial conditiof — Y152 —

tion function, [8]. With RF off the system of equations Ly = 1.

parallels that describing the motion of a body under grav- 14 gptain the distribution function at momentve ex-

itational force with integrals of motion similar to Kepler's press ¢y, 6o) as functions ofd, 8) and time and substitute

laws. This model gives different types of solutions. Dethem into the initial distribution function (1). Integration

focusing induced voltage makes debunching faster. A fQ5er4 gives the line density(8, t) and (2) becomes
cusing voltage slows debunching, but above some critical

intensity leads to bunch shape oscillations. These results d?o 9 €

were used for impedance measurements in the CERN SPS, az " [Wso ()

[9]. With RF on the amplitude and frequency of coherent

oscillations are calculated for a bunch far from equilibriumwherer = r(t) = (y7 + Q°y3)'/>. As one would expect
for an inductive impedang@m?Z > 0) the induced voltage
defocusege > 0) above transition and focusés< 0) be-

2 MAIN EQUATIONS low transition. The requirement that (5) should be valid for

We consider the motion of an intense bunch, short conarbitrary values off,,8,) gives a system of equations for

pared with the RF period, after injectioniat= 0 into a y; andy,. In new variabless(, &) defined byy; = r cos&

machine with a reactive impedandeiZ/n = const). The andy. = rsin £/, it can be written as:

initial distribution function is chosen to be

9=0, (5)

ré +2i€ = 0, 6

F=Fy(1—-Hy/H,)'? Hy<H, =6, (@) : ‘g 5 o

=J0 0 m ) 0 m — Ym>» 7'"'—r§2—|—w§0r——2 = 0. (7)
r

with parabolic line density(6y) = A0 (1—63/62,). Here

¢ is an azimuthal coordinate measured from the center of This system has first integrals of motion:

the bunch and = d6/dt. (6,5, 6,,) are the maximum val- L C2 o, 2
ues of @y, 6o), values at = 0. We assume that the initial Pt s twert - = O (8)
distribution function of the injected bunch is the function P26 = Oy (9)

of the HamiltonianH, of the injector. For short bunches
Hy = 02 + 0262, whereQ = 0,,, /0., = 2n/70(Apim/ps), Forws = 0 this system of equations is also known to de-
To = 20, /wo is the length in seconds of the injectedscribe the motion of a body in theg,(, Q2y-) plane under the



influence of gravitation with an attractive force for< 0
and repulsive foe > 0. The first expression describes
conservation of energy in the system and the second corre-
sponds to the law of areas (second law of Kepler). From
initial conditions we ge€; = Q2 + w?, + 2e andC, = 0.

As one can see the Wronski&ii = r2£/Q = 1 satisfies

our initial assumption.

The functionsy, (t) andy.(t) also define a phase space
distribution which is a time dependent solution of the non-
linear Vlasov equation. Note that equation (7) (Wjthe-
placed by2/r?) was obtained as an envelope equation iPE
[4]. However its further analysis, to the best of our knowl->
edge, was restricted to applying perturbation theory in the”™”
stationary case or to numerical integration.

The integrals of motion found above allow us to describe -
bunch motion by analysis of the equation
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which can be considered as the equation of motion of some r
particle with the coordinatein the potential
21— )L +ar — sr2(1+7)] Figure 1: Effective potential/(r) for different types of

U(r)

572 ) (11) induced voltage with RF offs(= 0) and on § = 1).
wherea = 1 + 2¢/Q% ands = w?%,/Q%. Herer(t) is a
positive defined function with the initial conditior{0) =
1, giving the variation with time of bunch length(t) =
To7(t) or of peak line density, (t) = Ayo/r(t).

Solutions of equations (8)-(9) can be written as

L a=-1.3
" ordr Todr ot /\A
Ot = ST = ~T @2 :
el A T v R

equilibrium
a=-1

Ap/Apo

wherep(r) = (r — 1)[1 +ar — sr?(1 +r)].
Bunch shape variation is fully presented by the function
r(t) while for single particle motion described by expres-
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sions (3) and (4) we need to know the phagg as well. 06 * ~ e
3 ANALYSIS OF SOLUTIONS o4 |- L
The character of the solutions depends on the relative val- | 7 o~ 00
ues ofQ), wyo and .. In Figs.1,2 we show some examples
of potentialU () and the solutions for different situations L
ana|ysed below. Co s 5 75 10 125 15 115 20 225 25
Let us start first with th&F off (s=0) case. If the func- at
tion r(¢) is known, the phasé can be found from expres-
sion 5 , Figure 2: Variation of normalised peak line dendify- for
r[(2° +€)cos§ — €] = Q. (13)  different types of induced voltage with RF off & 0).
a= 1. For low intensity ¢ = 0) the solution is
r(t) = (1+ ta2)1/2_ (14) a= 0. This is a point of bifurcation where the character

of the solution is changing. From (12) we have
Whene # 0, there are two main types of solutions which

correspond to infinite and finite (periodic) motion. Ot =2(r —1)"%(r +2)/3. (15)
a> 0. Motion in this case is only infinite, which means

continuous debunching (- so with £ — co): a< 0. The potentialU (r) has the form of a potential

well and the solutions describe bunch shape oscillations

p(r) a—1_ [2/ap(r) + 2ar + 1 —a| with time. This is possible only for a focusing type of in-
PR T In lta - duced voltager{lmZ < 0) when2? > Q?/2.

Ot =



For—1 < a < 0 the solution has the form The injected bunch is “matched” to the external plus in-
duced voltage whefd? = w?, — e. Otherwise it will per-

o VP o 1-a [ gp2ertl—a 7] fom oscillations around,, with amplituder, defined by
a 2ala|l/? 1+ al 2 (19).

_ o , ) 16) The analytic form for the period of the bunch shape os-
Oscillations begin with the bunch length increasing, so th%ﬁllations contains complete elliptic integrals of the second
1<r<1/lal. o and third kind. The calculated coherent frequengy=

The period of the bunch shape oscillations is 27 /T, as a function of intensity is shown in Fig.3. For the
7 (1-a) 272 focgsing type of inducgd voltage K Q) we changes very
T=4g PECRRC T EIER (17)  rapidly, while fore > 0 it has a flat minimum. Fos = 1

the frequency shift doesn’t exceed 10% of the low inten-
A bunch with an intensity such that= 0 (22/Q? = 1/2)  sity value withw, = 1.86wso atQ. = w, (When induced
has an infinitely large oscillation period and continuouslyoltage equals external voltage). This is close to the value
debunches. The period and amplitude of the oscillations. = 1.84w,, measured in [7] and considered there as “a
decrease with growinig|. Ata = —1, periodl’ = (27)/Q  mystery”.
but the oscillation amplitude is zero. Aw. 1
c

a= -1, (22 = Q?). This is the equilibrium situation
when the initial bunch is matched to the induced voltage 0-8;\_ st _
.. L . . s=0.5
and is in the minimum of the potential wéll(r) with so- 0.6
lution » = 1, not changing with time. 4 <=2
a < —1. This is the high intensity case wift? > Q2.
Oscillations now start with the bunch initially shortening 2
(1/]a] < r < 1). The solution has a form similar to (16) 0
with a period defined by (17). -0.2
Now let us consider the case wiF on. 0.4
Without intensity effectsg = 0) the solution B S e
s+1 s—1 1/2 . ¢/ . .
r(t) = o + o cos(2wsot) (18) Figure 3: Coherent frequency of bunch shape oscillalations

Aw, = (we — 2wsp) /wso as a function of intensity param-

describes pure quadrupole oscillations of the mismatché&dere/Q? for different values of RF voltages).

bunch ¢ # 1) with frequency2w;o andr(t) = 7/1 var- )

ing between, = 1 andr, = 1/,/s. This “low intensity” In our model particles have no synchrotron frequency

solution (the same as (14) in the RF off case) is indepesPread. From equa’_uo;] (5) t?e S0 ce;lled ‘incoherent” syn-

dent of the initial distribution, if only it is a function of the chrotron frequency is; = wi, — €/r*(t). This incoher-

HamiltonianH,, of linear synchrotron motion. ent frequency is modulated by the coherent oscillation fre-
For the high intensity the expressions (12) can be wridueéncyw. with depthe(1 — 1/r3).

ten in an analytic form using elliptic integrals of tr_le _first 4 ACKNOWLEDGEMENTS
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