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1 ABSTRACT

We present three-dimensional numerical results of self-am-
plified X-ray wiggler radiation from a relativistic electron
beam using Lienard-Wiechert forces to drive self-consis-
tently the motion of electrons. A mgjor advantage of this
approach is that except for collective radiation reaction
forces, al three dimensional classical interaction forcesbe-
tween electrons, including velocity (i.e., space chargeforc-
es) and acceleration forces, are included in the electron
motion. The exact three dimensional self-consistent motion
of abeam of electrons givesrise to exact three-dimensional
radiation fields which can be calculated with very few ap-
proximations. As an example of this approach we report
here results of three dimensional X-ray coherent wiggler
radiation calculations from a short relativistic electron
pulse.

2 INTRODUCTION

The usual technique applied to study the free-electron laser
amplification process entails solving a paraxial version of
the wave equation at one or more signa frequencies [1].
Although this approach has been quite successful in ex-
plaining most features of the free-electron laser (FEL) it
has limited usefulness when dealing with self amplified
stimulated emission of radiation (SASE) or when dealing
with radiation from short pulses for which many frequency
components must be included in the analysis.

As an dternative approach we propose using Lienard-
Wiechert fields, which are exact three-dimensional spatial
and temporal solutions of the wave equation for point
charges, to study the collective radiation fields generated
by beams of relativistic electrons interacting with undula-
tors, wigglers and electromagnetic waves. The cal culations
are self-consistent because all Lienard-Wiechert field inter-
actions between electrons, including velocity field (i.e.
space charge) forces, acceleration field (i.e. radiation) forc-
es, and external electromagnetic field forces are taken into
account to calculate the motion of each electron in the
beam. The nature of these particular solutions allows us to
derive in a straightforward manner differential equations
governing the self-consistent motion of al electronsin the
beam and as a result we can explore exactly the three di-
mensional nature of their collective radiated fields. Thisap-
proach becomes particularly useful in dealing with the FEL
start-up problem. Unlike the approach used by others, our
scheme requires no initial artificial electromagnetic seed to
start the numerical solution of the problem. Furthermore
because Lienard-Wiechert fields are time-domain solutions
of the wave equation, we can study non-periodic electron

beam systems. In particular we can deal satisfactorily with
three-dimensional effects of very long and very short elec-
tron bunches. A limited non-self-consistent approach was
used by us [2] to study the FEL stimulated emission pro-
cess. The major disadvantage in our approach is the re-
guirement imposed by the retardation condition on field
calculations. That is, the calcul ated fields must be rel ated to
the motion of electrons at earlier (retarded) times. We have
reduced the complexity of thiscaculationsin the ultra-rel-
ativistic region with the assumption that during an integra-
tion step the longitudinal velocity of each electron remains
constant. This basic approximation will be discussed in
more detail in section 4.

3 BASIC EQUATIONS

In what follows we assume that the electron beam is mov-
ing through a circularly polarized static magnetic wiggler
characterized by a zdependent vector potential,

A, = (A cosk z A sink,z 0) which is independent,
near the wiggler axis, of transverse coordinates (xy). Its
amplitude A, and period 21Uk, are assumed constant. We
will use k;, to define convenient dimensionless parameters
such as electron position, velocity, acceleration
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respectively and time T = kct. In addition we use the di-
mensionless relativistic parameter y to describe the elec-
tron’s normalized kinetic energy= (1-[32)'1/2. Since we
have assumed here that near the undulatorfgxis inde-

pendent of transverse coordinatesy) then the corre-
sponding electron’s transverse generalized momenta

(T, 1) = (YmeB, + gA,cosx,, ymep, + gA, cosy,)

is conserved. From this last relation an electron’s trans-
verse position, velocity and acceleration can be obtained
immediately in terms of its electron longitudinal position
Xz The time dependence gj is obtained from its longitu-

dinal velocityf3,

XAT) = X(0) + J B

The time dependence B4 is in turn obtained from the in-
tegration of the electron’s equation of motion which is driv-



en by the Lorentz force generated by all other electrons. 6 3DLW CODE
Since only éectric fields do work we choose to derive an
energy equation from which one can then calculate the lon-
gitudinal velocity

We have developed a three-dimensional PC code (3DLW)
that solves self-consistently for the motion of a three-di-
mensional pulsed beam of N electrons in a magnetic wig-

~ /\/ﬁ ~ 1+a%y gler taking into account all classical inter-electron forces,
B, =B -Bo= [1-—F. including Coulomb and radiation forces, with arbitrary 6N
Y initial conditions. The program plots input and output

The dot product betweenthgresultantelectri’cforcee>'<erted phase space diagram, calculates the space charge spatial
by all other electrons with an electron’s velocity vectogpectrum, evaluates and makes 3D plots of the angular and
yields a dimensionless energy equation of motion for thgsectral distribution of radiated energy and integrates the
ithelectron distribution to calculate total radiated energy. At this time
A 2 4 a2 > the largest number of electrons that are practical to run in a
dy; > =B A x (M —Bj)xa rgest num P
L . . ] + PC simulation is twenty thousand.
kul' [3| DZ
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which is written in terms of the electric component of th%\/
linear superposition of Lienard-Wiechert field generateﬂ
by the other electrong;; =k,R;j is the retarded normalized ;. a4 can be achieved with a high energy electron
electron-electron distance, the vea’lgris the retarded unit ,.celerator such as a SLAC machine. The physical param-
vector connecting electrgrwith electroni, s = 12N},  eters of the radiator are listed in Table 1:.
andrg is the classical electron radius.

4 RETARDATION

e present here three-dimensional results of Self Ampli-
ed Stimulated Emission (SASE) of wiggler x-ray radia-

Table 1: X-ray SASE parameters.

All dynamical variables included between square bracketsElec’[ron Energy / Gev

in the energy equation must be evaluated at atjrsatis- Beam Current 2500 A

fying the dimensionless retardation condition Pulse Length 0.1 fs

T = 1;;+p;;, which is in general a difficult equation to Wiggler Period 01 m

solve becausgj; depends on retarded time. The approxi- Wiggler Peak Field 015 T

mation that we make in our analysis is that since the longj-# Of Electrons 5000

tudinal velocity of highly relativistic electrons does not Normalized beam emittance 30 TTmm-mrad
change significantly during radiation in an undulator, even |nitial Energy Spread 0.01 %

when strong radiation signals are involved, electron’s lon- Wiggler Length 10 m

gitudinal velocity remains constant during a numerical in-

tegration step. With this approximation the retardedhe electron beam was prepared with a sefNoinitial
longitudinal position of each electrog;(tj;) can thus be .,n4itions Xair Xyir Xz B Byi’ Yy, i=1N, using a

derived from its present pOSItIQQj(T) using the relation double precision random number generator. For example
Xz(1) = X5(Tij) + B4 (1=T;5) = X5(T;j) +B;P;j- It~ Fig.1 describes the initiatB, component of random phase
grating numerically this simplified retardation conditionspace for five thousand particles.

with the energy equation yields the time dependence ¢ 6.0E-06 5Bx

)?(T), G(T) and a(T), which are respectively an elec-
tron’s position, velocity and acceleration.

5 RADIATION

The far-field angular and spectral distribution of radiation
can be obtained in a straight forward manner once the se
consistent motion of each electron is found. For a multi
electron system the amount of energy radiated per unit al
gular frequency per unit solid angle in the direction of the
unit vectom(8,9) is given by the well known formula [3]

kydz
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Fig.1 Initial x-B, phase space of 5000 particles

2 ) A Similar initial distributions were generated for g, and
1 dPw oW | & L ien-1din _ y
— - 0 J’ Ax S Bie 0O © g z-y phase space components. To achieve the desired current
2d0dw 2lJy N 2B : . .
mc 4ctt [0 ] level we assume that each particle represents the motion of

about 310 electrons. Fig.2 shows the output longitudinal



phase space of the e ectron beam after moving through ten
meters along the wiggler. The most salient features of this
plot isthe clear level of longitudinal electron beam bunch-
ing that has occurred. Since the electron pulselength is ap-
proximately 30 nm there are nearly 38 distinct optical
bunches in the pulse. A Fourier spatial anaysis of the lon-
gitudinal charge distribution (see Fig.4) indicates that
strong bunching has occurred at the fundamental radiation
wavelength (0.8 nm) and less bunching at the first harmon-
ic (0.4 nm) or at any higher harmonics.

Also, because of rdativistic effects, there is less bunching
at thetrailing edge of the pulsethan at itsleading edge. That
is, the radiation force is more intense along the forward di-
rection than along any other direction. Infact the amplitude

of the backward wave is at least a factor 2y2 smaller than
that of the forward wave. Furthermore electrons located
near the leading edge of the pulse will experience alarger
radiation force from electrons behind it than those located
near thetrailing edge of the pulse. In additionto anincrease
energy spread from 0.01% to 0.2%, the mean kinetic ener-
gy of the electron beam was reduced by 0.015%.
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Fig.2 Longitudinal phase space of 5000 particles.

A far field angular and spectral distribution (¢ = 0) of radi-
ated energy isshown in Fig.3.

Fig.3 Angular and Spectra distribution of radiation in
joules per steradian.

Instead of angular frequency we have chosen to plot the
distribution in terms of the detuning parameter v. The an-
gular radiation frequency can be obtained from

where L is the undulator length. That is, the angular fre-
quency decreases with increasing angle of observation 0.
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Fig.4 Longitudinal charge density Fourier analysis

Compared to the radiation distribution produced by inde-
pendently radiating electrons (synchrotron radiation), the
main effect of electron beam bunching has been to increase
radiated energy and to decrease the angular distribution
from By = 1to yB = 0.06 due to constructiveinterference ef-
fects, i.e., coherent radiation. The spectral distribution is as
narrow as that for a single electron (2v = 5.2) because the
electron beam pulse length is shorter than the slippage
length of the wave. For alonger electron pulse the spectrum
will be narrower but the peak power will remain un-
changed. Consequently the final spectrum for a long elec-
tron pulse will be determined not by the number of periods
in the undulator but by the number of electron bunchesin
the electron pulse. Integrating the angular and spectral dis-
tribution yields a peak radiated power of 320 kW inal0m
wiggler. Our results indicate that for a20 m wiggler SASE
power saturates yielding a maxim power of 400 kW. The
actual power levelswill be higher because we assumed that
electrons within a computation particle (310 €electrons)
contribute randomly to the total power. If they had contrib-
uted in phase with the macro particle the power would be
310 times greater (90 MW and 125 MW respectively). By
no means has the problem been focused to optimize radia-
tion energy in the X-ray region. Thisis one possible radia-
tion configuration that may make possible to generate
intense tunable coherent X-rays.
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