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Abstract array of higher dimensioM x M x N with N = 1. This

. ) - ends to expel subset-beam eigenvalue locus beyond that
The paper expounds a technique to find a sufficient condis . . S
. e . ... of the basic beam. It is a clear symptom of deterioration,
tion of (longitudinal, transverse) stability of a beam with . o : .
) e . ._though potentially so, of the situation with coherent stabil-
unequal bunches, partial orbit filling or bunch trains in- :
. : ity of a subset w.r.t. the basic beams.
cluded. It proceeds from a computer solution of eigenvalu

problems of moderate dimensions for an observable within-
bunch motion (multipole and head-tail modes, their higher- 2 MAJOR SET OF EQUATIONS

order radial modes) at a given normal coupled-bunch mo%

: . ; : . Lety = © — wet be azimuth in a co-rotating frame, where
of a conventional basic beam — a closed train of identical, . . oo )
. ) . is azimuth around the ring in the laboratory frameg,is
and equispaced bunches. Then, its complex eigenvalues : .
) . . angular velocity of a reference particlas time. Let us nu-
and non-diagonal Gram matrices of eigenvectors are use . N
. : . ~merate bunches of the basic beam with 0,1, ..., M —1,
to find boundary of a convex field of complex Rayleigh- ) . !
. . . . ) . . and denote a8; = —27j/M coordinates of their centers
Ritz ratios which yields an ‘upper’ estimate of eigenvalue

(4)
locus and, thus, stability safety margin for any arbitrary? cO-frame. Let/y,", Jo, be bunch currents (averaged over
beam which is a subset of the basic one. As an example §f0it) of a subset and the bzts_;c beams, respectively. In-
application, the technique is applied to transverse resistiidoduce bunch weights; = Jg,"/Jop < 1 withv; = 0

wall head-tail instability of bunches in théNK. standing for an empty bunch in thieth orbital position.
Let2)(9,t) = 2\9) (94 2n, t) be a variable to describe
1 INTRODUCTION coherent motion of thg-th bunch (a perturbed longitudi-

nal current, a transverse dipole moment). It can be decom-
Consider two beam configurations. The firie basic posed into plane waves
beam is a conventional closed pattern &f identical eqg-
uispaced bunchedlfihg the orbit entirely. The second x(j)(ﬁ, t) = 1 Z /dez(fj)(Q) eik(ﬁ — ;) — it
subset bearmis an arbitrary beam which is derived from 2m )
the former one by imposing unequal population to bunches. . : .
and(or) arranginé bUF;lCh t?ains gnd kE)eapm gaps. There ié’vgh 2 being a frequency of Fourier Transformfmw.r.t.

long-standing issue on how to relate asymptoti¢ (at co) co-frame.  In lab-frame() is seen as a side-band =

icgy (@) i .
stability safety margins of basic and subset beams. fiwo + ). Harmonicsz;((2) are calculated in the coor

An algebraic approach to this problem (a subset beagﬁnate system — v; attached to thg-th bunch center. A

with empty bunches) is pioneered by [1] where instabilit;?et ofz); can be arranged intoA x 1 column-vector
growth rates and coherent tune shifts are found as com-

plex eigenvalues of a bunch-to-bunch interaction matrix.

Ref.[2] treats a wider subset beam with unequally popysom 3 linear complex vector spacgy. In practice, N

lated bunches (an empty buneha bunch of zero popula- is yreated as its finite truncated dimension. Still, one can
tion). It also shrinks a rectangular estimate for subset-beagnowN _s o if all the relevant limits do exist.

eigenvalue locus of [1] to that of a convex Hufiround the
basic-beam eigenvalues. Still, the qualitative outcome of
[1, 2] is that “stability of the basic beam always ensure
that of a subset one”.

Unfortunately, the present paper would show that this _ 1 y ,
optimistic statement holds true only in frames of a simpli- Az = Y Zk, Vi P () etk (05 — ’91’)3553, V)
fied dynamical model in which bunch-to-bunch interaction 7
is treatable via a ‘planatM x M matrix. Accounting for Matrix Pyi/(Q) operates irCy. Its form varies slightly
impedance bandwidth extension and, say, transverse chi@tween longitudinglL) and transversél') cases,
maticity requires a ‘non-planar’ bunch-to-bunchinteraction

- T
= (...,Tp—1,%k, Tht1,...) €Cn

Stability problem of a subset beam can be stated as an
genvalue problem for a linear operator acting in the ex-

fended spac€ .y = @Y, C¥) whereCl) 5 70,
j N N

v ) Z0 (k' wo + Q) /K;

3
D) 27 (o + ). )

LA convex hullCo(a;) of array a; is a set of linear combinations Pkk,(Q) =
Zi cia; With ¢; = ¢, ¢; > 0, andzi c; = 1.



Coupling impedancesZ,gL)(w)/k and Z,ET)(w) exhibit wherewy, is a real positive weight. Vectof € Cy is a
similar reflection properties w.rd:, k = 0. Bunch transfer projection ofz € Cy.as.

functionsY,'>™) o Jo, can be found elsewhere and in- EQ.9 has only each/-th its eigenvalue\,, # 0. These
clude effects of Landau damping, decomposition into mugcan be obtained on projecting Eq.9 into a subspélce-

tipole (L) or head-tail dipoléT") modes, etc. I,,% € Cyypr of a smaller dimension,
Functions of integer variablgare conveniently decom- ) e oa m)
posed with Discrete Fourier Transform (DFT): Aee ' =1,P(Q) Zs . (12)
zm = 1 Z &9 exp (2minj/M), (4) [EAQ.12 isamenable to a straightforward search\for# 0
o) ( )J andf.’é") with computer codes available. Then, Eq.9 can
gV = an " exp (=2ming /M) (3)  be used to recover full-component vectad) € Cy

which describe observable motion of individual bunches.
All these formally belong to a range of operaféfn.

On the contrary, vectors from a null spacefbfn with
Xe¢ = 0 describe a hidderLAunobservable rnotion. Eq.9
shows that the null space &fI,, is a set ofz: I,,4 = 0.

wheren =0,1,..., M — 1is a wave number of DFT.

To simplify notations, letl, be a projection op-
erator fromCy to Cpy/pr.  Its matrix elements are
Ok Dy Okmyart With 6;; the Kronecker delta-symbol,

2o In = diag(...,1,1,.. ), the matrix unit. Hence, eigenvectors of the hidden motion may be com-
Transformation of Eq.2 to DFT-images yields posed as, say, a natural orthogonal seNok 1 column-
Az — Z N ﬁ(Q)fn’ 20 (6) vectorsfﬁ’g) =(...,0,1,0,.. .)T vyith a singl_e non-trivial
n’ component ‘1’ put consequently into every line save for the
whereA,,,,» denotes an interference factor (n + Ml)-th ones/ is an integer.

Thus, in practice, a complete set of eigenvalugsand

Appr = M~ Zj vj exp (2mi(n —n')j/M).  (7) eigenvectors? of Eq.9 can be found. For a given the
—(n) . . ~(n)

. e ” span ovett,,” originates the entire spa€ay. Hencez,,

Eq.6 shows that instability in a subset beam with 7 can be used as a coordinate basi€if. Its (Hermitian

cons’; mixes _aII DF'I_'-harm_o_nlcs of per_tu_rbat|on. _C_haracf)ositive defined) Gram matrix is
teristic equation of instability and sufficient condition of
beam stability are, respectively, Gf;‘;, _ (fﬁfz?)l m)jy(?l m/)) (13)

Ap(2) =1, maxp, o, |Ap(2 =01 +40)| <1. (8)

o) pen ol ' ) where(. . .) is a scalar product consistent with Eq.11,

Herep is a generalized index of the beam oscillation eigen-
mode, its eigenfrequendi,, being a root of the first of (d, b) = Z wy arby; a@,b € Cy. (14)
Egs.8. Instability occurs whem(2, > 0. 4§

Operatorﬁfn is not a normal one, hence basisiﬁﬁ) is

3 BASIC BEAM non-orthogonal, andifffgl, is a non-diagonal matrix.
Let us label its eigenvalues and eigenvectors with a sub-Ed-12 is commonly treated at length in an instability the-
script “e”. Now that; = 1 andA,,,, = ,,/, Eq.6 splits  OrY- Naturally, the desire arises to use its supposedly known
into M independent problems spectrumi,, (andeggl,) to localize spectrum,, of a sub-

N set beam and study its stability with the second of Eqs.8.
ANZ =P, 2, n=0,1,....M—1. (9)

The perfect beam periodicity decouples &@lf DFT- 4 SUBSET BEAM

harmonics. Each of them describes a possible coupleghultiply both sides of Eq.2 be_lwkw,(f)*/Vj and sum

bunch (CB) mode. Thus, the first sub-index of the basiGver &, j. Rewrite the result so as to arrange formally
beam eigenmode indeéx= (n,m) is naturally found, the Rayleigh-Ritz ratioR for a linear operatong,/) _
latterm being an index of inside-bunch mode whose comy -1p, ., exp (ik/ (9, — 9,/)) in Cy.az

J J i

ponents are identified in solving specific problems. Spacial

structure of modé = (n, m) is merely welz@)2 As v
, | wer, o= A R G g
#7) = 36, &9 =& exp (~2minj /M) (10) e wilzy 2 /v (&, )

which is an usual CB oscillation with a phase shift of Eq 2 shows thdtv,({j)| x vj. Hence|gc,(j)|2/yj x v; and

27n/M between adj_acent bunches. These modes are MEnding to a limitv; — 0 (empty bunch) ir¢ inflicts no
tually orthogonal be|_ng treated as hyper-vectors from ®froblems. Asv; > 0 by definition, it is easy to see that
tended spac€ y.»s with a scalar product ¢ € Co(v;). For realy; it entails

(d,b) = M~" Zk ; Wk a}(fj) b](fj)*; a,beCyu  (11) min; v; < & <max;v; = 1. (16)



Now used; = —2mj /M in Q and DFT fromEq.5toget  The span thus obtained over observaﬂ@/) does not nec-
essarily originate the enti@y. Calculations show that for

(Qz,1) = Zn (PIn #, f(")) J (17) a given inside-bunch mode eigenvecton?ﬁ’zi m) is nearly
N <(n) ~(n) independent of CB mode. Mostly, it carries data on spa-
(@,%8) = Zn (w » @ ) > 0. (18) " cial localization of perturbation inside bunch. Comparison
The last Eq. is but the Parseval sum due to orthogonality 8f £s-19,25 Withfﬁni,m ~ fﬁ?n)/,m in mind shows that
CB modes irC ... areasonable trial guess of subset-beam motion is arrived at
For eachn, eigenvectorst”) of PI,, — modes of the With atruncated series
basic beam — construct a complete countable skew basis in 2 ~ Z co f(?z) (26)
Cy. It can be used for coordinate representation of modes P {midee 20} *
fé") of a subset beam, \Lvhere residuumAZ(™ from a null space 0ﬂ3fn with
I,Az(™ = ( is disregarded due to a negligible value ex-
# = Zm ce 5. (19) pected. In practice, use of Eq.26 entails that summation

. . L . in Egs.22,23 should go over = 0,1,..., M — 1 and the
Inserting this decomposition into Eqs.17,18 yields observable SUDSEt, ' : Ae(nm)> Ae(n.m) Z O} ONy.
AN n)  « The last step is to search with computer for boundary of
(Qz,2) = Zn,m,m/ Aot 2 Gfm)”' ce,  (20) R by, say, a Monte-Carlo scan over coordinatesBy the
(£,%) = Z ce g™ >0 (21) Way, due to convexity oRR, any partial image of a subset
n,m,m’ mm in Cy.as can be lawfully diluted to the nearest convex set.
The figure shows this approach applied to study

a priori. (Otherwise, spectral estimates in question woulggSistive-wall instability in the UNK (betatron tune is
have not been required.) Let us allewbe arbitrary com- QT =55.7). Eigenvalues are interpreted as instability driv-

plex numbers, and study the so called numerical fiel of "9 impedanceg to be plotted in(Z)-plane of a thresh-

— a setR of possible values of Rayleigh-Ritz rati®s old map. Eigenmode index i6 = (n,my,r) where
head-tail mode isny = 0 throughout. The impedance

R = Z ag Nets Z ag =1, (22) is sampled with Eq.12 at frequency lines separated by
mm nm Muwg in |w| S 3.5Mwy. Thus, at most 7 radial modes
oD Gf;’;, Cp o3y T 0,1,...,6 are involved. Markers plot eigenvalues for
S ay o™ CZ/. (23) (n=-76,-75,...,—36;r = 0). Dashed broken lineis a
o e convex hull over(n = —M/2,...,M/2;r = 0) which
Then, majorizing the leftmost of Egs.15, one gets thstands for asingle-modemodel. Ellipses encircling the

where? = (n,m’'). One does not know coordinates

ay =

‘upper’ estimate of a subset-beam spectrum locus, origin are partial boundaries to image a span over radial
_ modesr = 0,1,2 at a CB moder = —58, —57,...,—54
Ap €R C Cr. (24)  nearest tn + @Qr ~ 0. Curve A images a span over

(n = —56,-55;r = 0,1), curve B — that over(n =
—57,—56; = 0,1). Thus, one can assess quantitatively
stability of a subset w.r.t. the basic beams.

Linear algebra tells th&, being a numerical field of a lin-
ear operatourCN.M, is:_(i) a bounded closed set T,
(ii) Yo € R, and (iii) R is a convex set that contains

inside every straight-line segment which connects its ele- s -

ments pairwise. S R ey
Should matrifo;‘gl, be diagonal, one would have got LI A

as = aj, 0 < a; < 1and, henceR = Co (Ae(n,m)) /

which would have reproduced the result quoted in Sect.1. 025 ] A s

However, generallﬁfggl, # Omm- Only on adopting a /

single-modemodel when a bunch is deprived of all but 015 +—— - /

the m,-th degree of freedom, i.€\¢y = Aerdmm, and §55;0) / A

ce = cedmm,, ONe virtually gets a diagonal x 1 matrix 0.05 2(754 » y (’m>:<757 —

Gfg}w. This kind of assumption is tacitly implied in [1, 2]. Q%

It is well adequate when beam interacts with a band-pass 008 Frrrrrrrrrrr e,

high-Q HOM impedance({) or (T"), chromaticity off), Re¢/Rr

or with a low-pass narrow-band resistive-wall impedance
((T"), chromaticity on and off).

In a multi-modemodel, put EQ.19 into EqQ.6 to reveal 5 REFERENCES
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