
LONGITUDINAL COUPLED–BUNCH BEAM
FEEDBACK SYSTEM IN THE UNK

S. Ivanov and A. Malovitsky, IHEP, Protvino, Moscow Region, 142284, Russia

Abstract

To damp longitudinal injection errors and ensure better sta-
bility against coupled-bunch (CB) lower-order odd multi-
pole instabilities in the UNK proton synchrotron a band-
pass CB beam feedback (FB) near RF is proposed, its band-
width exceeding a revolution frequency. Employment of a
pair of issued over-coupled RF cavities driven in quadrature
to the net accelerating voltage as its acting device is fore-
seen. A frequency-domain impedance treatment is applied
to find feasible beam stability safety margins and damping
rates of injection transients. The problem of control over
longitudinal emittance growth is studied in time domain
with a macroparticle tracking. Being employed together
with an RF FB around power amplifiers drivingaccelerat-
ing cavities, the beam FB proposed is shown to yield beam
parameters which comply with the UNK Project’s require-
ments.

1 INTRODUCTION

The UNK Project [1] foresees two band-pass longitudinal
FB systems near the RF. These are:

(i) A now standard (D.Boussard) one-turn delay DC-
coupled RF FB around a final power amplifier to counter-
act heavy pulsed beam loading of RF cavities and strong
coherent instability due to their fundamental mode [2].

(ii) An AC-coupled beam FB to damp injection errors
and ensure better stability against CB lower-order odd mul-
tipole instabilities [3]. The latter system is treated at length
in the paper.

Both the FBs having their bandwidths∆ω(fb) exceed-
ing the revolution frequencyω0 while bunch in the UNK
being long enough, of utmost importance is adequate un-
derstanding of the FBs’ effect on CB motion of beam
at dipole, quadrupole and sextupole within-bunch modes
(|m| =1,2,3, respectively).

To this end, a frequency-domain impedance approach to
linear longitudinal CB beam FBs has been worked out [4].
Essentially, it puts on a formal basis a common intuitive
notion that a FB is seen by a beam as an artificial coupling
impedance controlled from the outside. Still, toaccount for
cross-talk between variousE-field and beam-current har-
monics inflicted by frequency down- and up-mixing inside
the FB circuit, an impedance matrix (with, at most, three
non-trivial elements per row) must be introduced.

2 CHARACTERISTIC EQUATION

Let ϑ = Θ− ω0t be azimuth in a co-rotating frame, where
Θ is azimuth around the ring in the laboratory frame,ω0 is
angular velocity of a reference particle,t is time. Let the
beam with average currentJ0 be composed ofM identi-
cal equispaced bunches. Denoteh the RF harmonic num-
ber (h/M is an integer). Longitudinal fieldE(ϑ, t) and
perturbed beam currentJ(ϑ, t) can be decomposed into

plane waves(Ek(Ω), Jk(Ω)) eikϑ− iΩt. FrequencyΩ of
Fourier Transform int w.r.t. co-frame is seen as a side-
bandω = kω0 + Ω in lab-frame. CB modes are labeled
with n = 0, 1, . . . ,M − 1, bunch-to-bunch phase shift of
coherent motion being2πn/M .

Beam FB in question employs the same RF-band around
±hω0 to pick up beam signal and feed correction back
to beam. Its effect can be put down in terms of cou-
pling impedancesZkk′(ω) which relate linearlyJk′(Ω) to
E

(fb)
k (Ω) fed back,

E
(fb)
k (Ω) = −

1

L

(
Zkk(ω)Jk(Ω) + Z

(fb)
kk (ω)Jk(Ω) +

+ Z
(fb)
k,k−2hsgnk(ω)Jk−2hsgnk(Ω)

)
(1)

with L being the orbit length,ω = kω0 + Ω, |k| ' h,
|Ω| � ω0. Here, the first term is a conventional impedance
of vacuum-chamber passive components (ReZkk(ω) ≥ 0).
The latter two account for an active correction imposed
by the FB. These stem out of linearity of A.M. and de-
A.M. procedures applied to slowly varying signals, and are
free of restrictionReZkk(ω) ≥ 0 which is to introduce
damping into the beam coherent motion. ‘Non-diagonal’
impedanceZk,k−2hsgnk(ω) is due to an unbalanced fre-
quency down- and up-mixing inside a FB with unequal in-
phase and quadrature path transfer functions. Its presence
is inevitable when, say, an inphase (amplitude) control is
off, as it is in the FB under study.

Now, insert Eq.1 into a conventional theory of lon-
gitudinal instabilities. Given a narrow-band FB whose
∆ω(fb) �Mω0/2, it yields a characteristic equation [4]:

1 +
Ω2

0 J0

hV sinϕs

(
ζn(Ω) + ζ(fb)

n (Ω)
)
Yhh(Ω) = 0. (2)

Here,Ω0/ω0 is a small-amplitude longitudinal tune,V is
accelerating voltage,ϕs is a stable phase angle (ϕs < 0
above transition, energy gain per turn iseV cosϕs).
Yhh(Ω) is a plane-wave BTF fromEh(Ω) to Jh(Ω). Its

lengthy full form can be found elsewhere [3, 4]. Generally,



to study damped oscillations that are of interest in the beam
FB theory, an analytical continuation ofYhh(Ω) into the
lower half-planeImΩ < 0 is required. For reference, a
bunch without incoherent tune spread exhibits

Yhh(Ω) = i
∑∞

m=1
m2F

(m)
hh /

(
Ω2 − (mΩ0)2

)
, (3)

whereF (m)
hh is the bunch formfactor,F (m)

hh → h2δ|m|,1 as
bunch half-length (in RF rad)h∆ϑ0 → 0.

In Eq.2,ζn andζ(fb)
n are the effective (or instability driv-

ing) impedances at side-bandsΩ ' mΩ0 of the two reso-
nant frequency linesk1,2 = n+Ml1,2 ' ±h of a CB mode
n that occur inside∆ω(fb)/ω0,

ζn(Ω) = Zk1k1(k1ω0 + Ω)/k1 + . . . k1 → k2,(4)

ζ(fb)
n (Ω) = Z

(fb)
k1k1

(k1ω0 + Ω)/k1 + (5)

+ (−1)mZ
(fb)
k1,k1−2h(k1ω0 + Ω)/k1 +

+ . . . k1 → k2, h→ −h.

To apply Eq.2, one has to write down coupling(Z) and
reduced(ζ) impedances in terms the FB path transfer func-
tions and its set-point parameters.

3 FB PERFORMANCE
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Figure 1: CB beam FB layout.

The circuit layout is shown in Fig.1. It relies on two-path
inphase-quadrature filter technique.H(c,s)(δω) are low-
pass transfer functions with∆ωH � hω0. (The inphase
gain (amplitude control) is off. Still, optionH(c) 6= 0
is retained in Eqs. for generality.) The rest are band-pass
transfer functions: front-end electronics’ admittanceS(ω);
current-to-current gainK(ω) through PA;T (ω) from ex-
ternal drive current to AD gap voltage;−T ′,W ′(ω) from
beam current to AD or PU gap voltages, respectively.

Phaseφ′ of up-mixing carrier is set equal toφ of a low-
level drive that would have provided an inphase contribu-
tion of AD to net accelerating field. Phaseφ of down-
mixing carrier is adjusted w.r.t.φ′ so as to settle transit-
time effects due to finite PU-AD distance. The FB is AC-
coupled: it rejects strong beam loading signals atω = kω0

with periodic notch filters, thus making redundant an adder
unit to subtract a reference current in the l.h.s. of Fig.1.

Impedances to mediate the FB action are

Zkk(ω) = T ′(ω)|G(AD)
k |2, (6)

Z
(fb)
kk (ω) = −χ11(ω − hω0) × (7)

× W ′(ω) G
(AD)
k G

(PU)
−k ,

Z
(fb)
k,k−2h(ω) = −χ12(ω − hω0) × (8)

× W ′(ω − 2hω0) G
(AD)
k G

(PU)
−k+2h.

Hereω = kω0 + Ω, k ' h > 0, |Ω| � ω0. The do-
main ofk ' −h < 0 is arrived at with the reflection prop-
ertyZ−k,−k′(−ω∗)∗ = Zkk′(ω). G(a)

k with a = PU,AD
denote complex transit-time factors atω = kω0 with
|G(a)

k | ≤ 1 and argG
(a)
k ∝ Θ(a), the object’s coordi-

nate along the ring. These are but coefficients of Fourier
series

∑
k G

(a)
k eikΘ that decomposes functionG(a)(Θ),∫ 2π

0
|G(a)(Θ)|dΘ = 2π which specifiesE-field localiza-

tion. Quantitiesχij(δω) are elements of the2 × 2 in-out
gain matrix through the open FB loop

χ11(δω) = .25TK(hω0 + δω)S(hω0 + δω) ×

×
(
H(c)(δω) +H(s)(δω)

)
ei(φ

′ − φ); (9)

χ12(δω) = .25TK(hω0 + δω)S(−hω0 + δω)×

×
(
H(c)(δω) −H(s)(δω)

)
ei(φ

′ + φ); (10)

χ21(δω) = χ12(−δω∗)∗; χ22(δω) = χ11(−δω∗)∗.

The key components of the FB are: (i) an AD with

T (ω) = T ′(ω) = RT ×

(
1− i

ω2 − ω2
T

2ω∆ωT

)−1

, (11)

whereRT is shunt impedance,ωT = hω0 is resonant fre-
quency,∆ωT/ω0 ' 10 is half-bandwidth, and (ii) a three-
tap periodic FIR filter with global one-turn delay,

H(s)(δω) = A(s)
∑2

q=0
wqe

2πiδω(1 + d1q)/ω0 . (12)

Here,wq are real weights,d1 is an integer delay step mea-
sured in turns,A(s) is a real scale gain from beam quadra-
ture current in PU gap to RF drive current seen inside AD
gap. A low-pass filter to ensure∆ωH � hω0 is not shown.
Two conditions are imposed onH(s)(δω):

H(s)(kω0) = 0, H(s)(kω0 + Ω0) = A(s)e−iυ (13)

with υ being a prescribed phase shift at dipole side-bands
(we adopt a standardυ = π/2). Solving Eqs.13 yields

w0 = .5 (+ sinµ− cosµ cot .5δµ1) /sin δµ1, (14)

w1 = .5cosµ/sin2 .5δµ1, (15)

w2 = .5 (− sinµ− cosµ cot .5δµ1) /sin δµ1 (16)



with µ = υ + δµ0 + δµ1, δµ0 = 2πΩ0/ω0 andδµ1 =
2πΩ0d1/ω0. To detect reliably a slow longitudinal motion
(Ω0 � ω0), one has to increased1. Still, with d1 grow-
ing, the circuit phase-frequency performance degrades, the
FB itself tending to destabilize higher-order odd multipole
modes. Of these, only sextupole(|m| = 3) might be of
danger in practice. With these two tendencies in mind, de-
lay d1Ω0/ω0 is traded to 1/10.

GivenNAD = 2 cavities, gainsA(s) >∼ 12 would expel
dipole off-resonance CB modesn beyond Landau damp-
ing threshold. Adopting a factor-of-two safety margin sets
A(s) = 6. This option yields the following gainK in mag-
nitude from beam c.o.m. phase error at ‘barycentric’ mode
(n,m) = (0, 1) to accelerating field phase correction

K = J0 NADRT

∣∣∣G(AD)
h G

(PU)
−h

∣∣∣ A(s)/V ' .35. (17)

Value of injection error treated linearly is (in units of an RF
phase offset)|hδϑinj| <∼ 2/A(s) ' 20◦.

Fig.2 is a threshold map for the beam FB effect. Dashed
lines are drawn throughζn(Ω) + ζ

(fb)
n (Ω) atΩ = mΩ0 for

m = 1, 3, and account for action of the beam FB alone.
(Quadrupole modem = 2 is kept unaffected.) These lines
are transformed into the solid ones by a residual destabiliz-
ing impact of the accelerating cavities controlled by RF FB
[2]. CurvesA, B are threshold ones form = 1, 2, respec-
tively. Bunch half-length ish∆ϑ0 = .54π.

Injection transients show themselves up, mainly, as
dipole coherent motion. Fig.3 is am = 1 threshold map
with contour lines of constant decrement, i.e. the images
of straight linesΩ ' Ω1 + iΩ2 plotted for Ω2/Ω0 =
−.07(.01).0. These represent the closed-loop modes with
the slowest decay which define the response timeτ of
beam controlled by CB FB. Damping time of injection tran-
sients depends on CB moden and falls into the range of
.015 <∼ 1/ (Ω0τ) <∼ .075.

Feasible damping rates were verified with macroparti-
cle tracking. Fig.4 shows tune shiftΩ2 in units of inco-
herent spread∆Ωs = Ω0h

2∆ϑ2
0/16 which corresponds

to a counter-clockwise detour around Fig.3 along the
impedance godograph. Despite facing an ill conditioned
problem of analytical continuingYhh(Ω) into ImΩ < 0,
agreement between Figs.3,4 is quite satisfactory.

Fig.5 complements Fig.4 and shows amounty of initial
off-set squared that ultimately smears into r.m.s. emittance
ε, y = (δε/ε0) · (δϑinj/∆ϑ0)−2. Each CB moden is
crudely assumed to be injected and evolving isolatedly. On
FB being off,y ' 1. Thus, FB’s bandwidth w.r.t. emittance
growth reduction is about±25ω0.
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Figure 2: Stabilizing effect of CB beam FB.

Figure 3: Threshold map of dipole oscillations.

Figure 4: Damping of dipole oscillations.

Figure 5: Control over emittance growth.


