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Abstract larger than for positiver. Hence, careful examination of

The storage ring Super ACO at Orsay offers a Iargt()aOth the punch shape and_the energy spread is important.
. 2~ Experimental observation of both the bunch-shape

agility as regards the value of the momentum compaction

factor (@), i.e., under special conditiorts can be set to and the energy-spread for different valuesis not

either positive, negative or very small values. This aspe%{ralght-forward, however. Firstly the optics of the SR

can be important for the development of new Storagé]—eed to be adjusted. Secondly a set of diagnostics is

. - . required. The synchrotron light-source Super ACO, see
ng.(s.R) based light-sources where a high electrOL].ab_ 1, has the capability of running with positive and
densny_ Is advantageous. Recently, the influence oh negative or smalla [3]. Under these conditions the

the micro-bunch length and the energy-spread WaRicro-bunch shape and energy spread were measured

investigated  experimentally. The  diagnostics Ar%ith a set of diagnostics installed for the Super ACO

described in detail. Results, regarding the influence of tPEaEL_ the bunch-shape was measured with a double-sweep
average beam current amd on the bunch-length and streak-camera and a dissector, while the energy-spread

energy spread, are discussed. was deduced from the properties of the spontaneous-
Table 1: Nominal operating parameters of Super ACGmission spectrum emerging from an optical klystron

Anomalous values are mentioned in the text. (OK). A detailed motivation and description of the
beam energy E | 800 MeV diagnostics is given in Sec. 2. Results are presented in
circumference L |72 m Sec. 3.
rf'frequency frf 100 MHz - beam Super ACO dipole
rf-voltage Vv, | 170 KV pectromater .
horizontal emittance | g | 40 mnm rad s o dipole /
momentum comp. fact| a | 0.0148 i s == 4
average beam current| | | <400 | mA i 7 Ne window  °ptical Klystron /."
number of bunches | n, | 1-24 L pinhole , veeum system y

focussing mirror .
s streak camera / dissector

1 INTRODUCTION Figure 1: Experimental setup. The energy spread is

The micro-bunch shape and the energy spread asl@rived from the spectra of the OK (left). The bunch-
function of the average beam current is an importafhape is derived from synchrotron radiation emitted from
parameter to understand the dynamics of a SR, especiaglipole (right).
for the understanding of future generation storage rings
where the electron density will be high. Simulations by 2 DIAGNOSTICS
Fang et al. [1], based on the resonator impedance model, o schematic sketch of the experimental setup is given
show that the longitudinal bunch shape is less deformeg Fig. 1. Measurements of the bunch-shape have been
and bunch lengthening is less at increasing beam-currgf¥ne with the aid of a dissector and a double-sweep
with negativea. Hence, this could be advantageous fogyeak camera (Hamamatsu C5680) recording the
machines where short bunches or a high peak-currentdsncnrotron radiation from one of the dipoles of Super
of interest, e.g., synchrotron sources for time resolveflco A schematic overview of a streak camera is given
spectroscopy, or storage ring free-electron lasers (FEL) rig. 2a: the evolution of the synchrotron radiation is
Whep changing a thg .energy—spread .needs to beprojected onto a photo-cathode. The evolution of the
considered as well. This is, for example, important for 8gjectrons is then transformed into a spatial distribution
FEL where the gain impedes with increasing enerGrough a high-frequency sweep on the deflecting

spread. Calculations by Besnier et al. [2], assuming Gectrodes. Finally the signal is recorded onto a
mostly inductive impedance, show that even if the bunch

is shorter with negativex, the energy spread may be



phosphorous screen. The resolution of the streak-cam@@nsequences is approximately 10-fold increase in the

used is approximately 2 ps. horizontal beam emittance[5].
photo-cathode phosphor screen It is more accurate to derive the energy spread from
(2) " deflecting clectrode »" the spontaneous emission of an undulator or, even better,
I] I CCD from a so-called optical klystron (OK) [6]: a set of two
—::'3>-' + (small) undulators separated by a drift- or dispersive
II] _|_ section. Similar to a regular planar undulator the central
slit/ pinhole /\/\/\/\/ of -sweep wavelength of the OK radlat|c2m is given by:
photo-cq&hode . slit A R= A_U(:H. K_ + y202] (1)
(b) deflecting electrode » 2 y2 2
D I where A, is the undulator periody the Lorentz factor
p— :'3>" i I_I """ - corresponding to the electron-beam energy @&nthe
it TI _|_ anode angle of the off-axis radiation. The paramdfezxpresses
%T the field strength of the undulatd££0.93B, A, [T][cm]).
é; AVAVWVIAV Since the radiation of both undulators is generated by the
g | - same electrons, both sources are coherent. Hence, the
high frequency sweep (100 MHz) | time radiation of the two undulator sections interferes and the
) ~ low frequency sweep (0.05 - 10 kHz) spectral distribution of the undulator radiation is modified
Figure 2: Schematic overview of a streak-camera (a) apg [6]:
a dissector (b). (V) Osin@(NV)[1+  cod (N+ Ny W)]
The dissector [4], see Fig. 2b, is a stroboscopic devi (2)
e dissector [4], see Fig. 2b, is a stroboscopic device v=2mAg-N)/ A g

and, hence, can only be used to analyze reproducibl$1ere the parameteN, denotes the number of
d

signals with a fixed period. The phosphorous screen W )
replaced by a slit/anode which permits the recording (yyavelengths of light that pass over the electrons as they

only a small part of the micro-bunch distribution. Thdraverse the dispersive section. In Fig. 3a an example of

specific part of the distribution changes gradually throug%‘iCh a spectrum is given. The modulation rate and thus
B

the aid of a low-frequency sweep of the bias-voltage o e homogeneous line-width of one fringe depends on the
ase-delay between the two undulators and can be

the deflecting electrodes which enables the registration bf i e
the whole distribution on multiple passages of a microfildJUSted by changing the magnetic field strength of the

pulse. The resolution of the dissector used i ispersive section.'ln the case of a finite.energy spread
approximately 10 ps. A main advantage of the dissector fae spectru.m deteriorates and the modulation depth of Fhe
its capability to process an analogue output sign petcgutm IS fretc:]uced, see F|g.d3b. Foff ; (fBaustilan
directly. However, due to its stroboscopic nature it is n 'S(;' Iut!on Ot 6e' energy-spread one Minds for the
possible to follow fast fluctuation phenomena. modulation rate [6]:

a, A 2
AU T B I LA B L B _ _2[2"(N+Nd)7ﬁj
_Mr@ vy 1 [ (b) : f=fye 3)
g 08 1 r ] whereo, denotes the absolute rms energy spread in terms
= O06[IN_ -« 1 [ of the Lorentz factory andf, denotes the reduction in
S 04r 1 r modulation rate due to other inhomogeneous effects, e.g.,
8 o2 d emittance. It is with the aid of Eq. (3) that the energy-
00 P— spread can be determined, i.e., by recording the

0 5 5 0 5 . ;

DA (%) AV (%) modulation depth of the power spectrum as a function of

Figure 3: Measured spectrum of the Super ACO OK SUhe gap of the dispersive section. For the experiment the

(N=2x10): (a) with a low magnetic field-strength in theemission of the SU7 OK was focused down to a spot of
dispersive section N+N,=55) and (b) with a high =100 mni on a pinhole with a diameter of 1Q0n in

magnetic field N+N,=110). order to select the on-axis radiation only, see Eq. (1). The

In a SR the energy spread can be derived from tﬁgdmtlon passing through.a. grating spectrometer was
) R : recorded with a photo-multiplier. The spectral resolution
transverse beam-dimension in a section of the SR wi
. . ; of the spectrometer was of the order of 0.03 nm at a
non-zero dispersion. However, the method is not always : ;
. avelength of 410 nm, i.e., the longest possible wave-
accurate, especially when other parameters, such as ihe : .
! ) . . ength at the nominal beam energy of 800 MeV. This
emittance, play a more prominent role in determining the ) A .
: : . wavelength was chosen in order to minimize the line-
transverse beam dimension. We note that, though it \}\ﬁdth broadening due to emittance. The valudlpéould
possible to operate Super ACO with negative the 9 '

machine was not designed for this purpose and thbe varied by means of a change of the gap of the

flexibility of the optics is limited. At present, one of thecﬁsperswe section of SU7.



dimension in a section with non-zero dispersion. The

600 prrrrrrrr results obtained are similar. For negativethe energy
500 g ® 8> . spread increases more rapidly with increasing beam
—~ 400 8 (! 3 current. Also the initial energy spread at zero current is
g ® . 1 already somewhat larger. The reason for this last effect is
= 300 8 * E not clear yet. However, we should note that due to the
§ 200 [g#® . increased beam emittance these measurements were more
100 o dissector complicated and the estimated maximum error margins
N T ® streak pgmqﬁa are much larger. For a more accurate measurement it is
0 5 10 15 20 25 30 35 necessary to reduce the effects of emittance.
Ib(mA) Frofr oy rrfrrrrrrrrrrrrprrrrprrooy
Figure 4: Bunch length vs. the current per bunch for 1.0 v v% 3
Super ACO witiE=600 MeV andx=+0.0148. 08k gvV v 3
‘g\ ZVWV v <> é
3 EXPERIMENTAL RESULTS % 0 65'0 ..O.o.o.ooooc’oO’oO o8 E
In Fig. 4 a comparison of bunch-length measurements> 04F E
with a streak-camera and a dissector is shown. The™ g2F 3
results are obtained simultanously in a 2 bunch mode of 05....|....|....|....|....|....|....-
operation. The average current was kept below 35 ™%, 5 10 15 20 25 30 35

mA/bunch in order to avoid bunch oscillations such as I (MA)
quadrupolar motions that occur above this current and are b

too fast for the dissector to be followed. During these Figure 6_: Energy spread i‘s a funcpon of ‘bunch
cu[rent fora=+0.015 (dots) and=-0.015 (triangles). At
measurements the streak-camera was also severa

synchrotron periods. Contrary to the results found bgosmvea results are compared with a diagnostic based

Clarke et al. [7] both the dissector and the streak-cameta the transverse beam dimension (solid dots).

provide similar results.

CONCLUSIONS

500 prr——r— The diagnostics critical for the FEL have proven to be
400F ® o =+0.0148 o ® "._f beneficial for a better understanding of the beam
- e ® ° 3 dynamics. The results obtained suggest possible merits of

4 300 w®’ o a negativer mode of operation. The bunch-length can be
£ 200 8“%; o %o d %oo o° © E reduced at the expense of a somewhat increased energy
§ v 1 spread. For a definite answer more research is necessary.
100 0 a =-00215 For example, preliminary calculations based on the
N T v a =-00026; present results already suggest an equivalent performance
0 5 10 15 20 for an FEL with either positive or negative Further
I, (MA) optimization might thus prove important.

Figure 5: Bunch length vs. the current per bunch for
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