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1. INTRODUCTION
The simulation code for single-bunch instabilities,

SISR(Single-Bunch Instabilities in Storage Rings) was
developed and applied to study instabilities in the SPring-
8 storage ring. SISR uses complex amplitude of betatrom
motion and it enable to treat both distributed broad-band
impedance such as small discontinuities of a beam pipe and
localized impedance like cavities.
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where ν 0, β and E is the betatron tune, the beta function and
the energy, respectively.

The force Fi from wake field is
   

Fi = e qj xj
d
dsW⊥ zj − zi, sΣ

j = 1

Np

   

   
= eβ

1
2 qj η j

d
dsW⊥ zj − zi, sΣ

j = 1

Np

 . (3)
Assuming that
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, which means that the typical varying time of a
i
 is much

smaller than the betatron period λβ/c, and using the phasers

shown below,
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the equation (2) become
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The third term of the right hand side can be set to zero in
usual cases because β3/2f  usually does not have the Fourier
component of the frequency 2ν 0.

Hence the equation
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is used to simulate distributed impedance.
The integral in this equation (9) can be written as
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and from the approximation (4), we have
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The final form of the equation of transverse motion of
particles used in CISR is
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3. DIFFERENCE EQUATIONS
The difference equations used in CISR to simulate the

electron motion are as follows. For longitudinal motion,
∆Ei=Ei-E0 and z=s-ct, where s is the co-odinate to the
direction of particle, is used to describe longitudinal motion
of particles. T0, and E0 are the revolution period and reference
energy, repectively.

In the following, the symbol with superscript + and - are
the value after and before the passage of each element. In the
following, respectively.

3.1 Lattice with Distributed Broad-Band
Impedance
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where    ∆θ = 2π ∆T
T0

,    r = a , a = reiφ
.

3.2 Localized Broad-Band Impedance

For the localized impedance such as cavities,
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where    x = βη i = βRe ai θ eiν0θ

3.3 Acceleration

For acceleration by    eVa z = eVc sin 2πfrf
z
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Eq.(25) is transverse radiation damping.

3.4 Radiation Excitation
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where u, v are the Gaussian random number and w is
uniform random number. ∆T  is the time difference between
each excitation and τE and τ b is radiation damping time for E
and x, respectively. σE,0 and ε0 are natural energy spread and
emittance.

4. PARTICLE-IN-CELL METHOD
SISR is the particle code and a Particle-In-Cell(PIC)

method is used to make wake field and interact the particle
with the wake field. The shape function used in SISR is
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and the distributions
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are evaluated on the mesh points whose position is
represented by zp,

And wake potentials appeared in above equations are
evaluated at the mesh points using these distributions as
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The wake potentials at the particles are obtained with
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5. WAKE FUNCTIONS
The three types of impedance models listed below are

used to get wake functions. For longitudinal,

  Z ||    ± i ωZL
||   ZR

||    ZC
||

ω 1 + i

  W||    ZL
|| c2 ∂δ z

∂z
   ZR

|| c δ z    ZC
|| 2c

π z ± 1
2 θ ±z

and for transverse,

  Z ⊥
   ± i Z L

⊥
  ZR

⊥

ω
   ZC
⊥

ω ω 1 + i

  W⊥
   ± ZL

⊥ c δ z    ± ZR
⊥ θ ±z    ± ZC

⊥ 2 2
πc z

1
2 θ ±z

6. THE SPRING-8 STORAGE RING
The CISR is applied to the study of the instabilities of

the SPring-8 storage ring. The parameters of the ring is
shown in Table 1.

Table 1. The parameters of the SPring-8 storage ring.
Parameter Value Unit

Energy E0 8 GeV
Revolution Frequency T0 208.77 kHz
Energy Loss per Turn U0 9.2 MV
Damping Partition Numbers JE / Jβ 2 / 1
Momentum Compaction Factor α 1.41×10−4

Betatron Tune (vertical) ν 0 16.16
Averaged Betatron Function β 17.3 m

The impedance of the ring is estimated in ref.[1] and is

Z i
i|| . .= − × + + × +

1 67 10 400 1 49 10
15 8ω

ω
(28)

Z i
i⊥ = − × + × + × +

2 13 10 4 98 10 4 21 10
15 14 10. . .
ω ω

(29)

where  Z⊥  is vertical transverse impedance. The unit for
them are Ω  and Ω /m, respectively.

6.1 Longitudinal Instabilities

Figure 1 shows the dependence of the bunch length and
the energy spread σE/E on the bunch current Ib. This ring is
rather inductive compared with colliders, the potential-well
distortion lengthen the bunch length and the threshold of
microwave instabilities can not seen until the threshold
current of the transverse instabilities mentioned later.
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Figure 1. The bunch length and energy spread.

6.2 Transverse Instabilities

Figure 2 shows the bunch current increase vs. time used
in the simulation.

1.0

0.0

B
un

ch
 C

ur
re

nt

2 01 51 05
Time [x10

-3
 s]

Figure 2. bunch current shape vs. time
Figure 3 and Figure 4 show the amplitude of betatron

motion of the bunch vs. time for chromaticity ξ=0 and ξ=4,
respectively. Instabilities occurs at Ib=3mA and Ib=7mA for
ξ=0 and Ib=10mA for ξ=4.
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Figure 3. Amplitude of the betatron motion vs. time. ξ= 0.
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Figure 4. amplitude of the betatron motion vs. time. ξ= 4.
Figure 5 and 6 are the spectrum of the betatron motion of

the bunch. (m,n)=(0,0) and (m,n)=(0,1) mode can be seen.  
The m=1 mode must be exist at the synchrotron frequency
fs=1.5kHz lower position, around f=32 kHz, but no signal
can be seen.

From Figure 5, which is for ξ=0, the coupling of mode
(m,n)=(0,0) and (m,n)=(1,0) occurs at Ib =3mA and the
coupling of mode (m,n)=(0,0) and (m,n)=(2,0) occurs at
Ib=7mA. Both lead to instabilities. For chromaticity ξ=4, of

which data is not shown here, the signal of mode
(m,n)=(0,0) can not be seen.

 In Figure 4, No instabilities occurs near Ib=3mA, but
the m=2 mode growths up at Ib=10mA. The difference
between ξ=0 and ξ=4 seems to be from the effect of the
head-tail damping, which can be seen at the beginning of the
bunch current increase, where time ~ 5ms in Figure 4 and it
is faster than radiation damping time which is seen for
Ib=0mA.
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Figure 5. Spectrum of the betatron motion of the
bunch ,Ib=0mA,1mA,2mA,3mA.  ξ= 0.
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Figure 6. Spectrum of the betatron motion of the
bunch ,Ib=4mA,5mA, 6mA,7mA.  ξ= 0.
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  Figure 7. The position of peak of each mode of the
spectrum of the betatron motion of the bunch. ξ= 0.

When chromaticity ξ=-2, the growth-rate of  the head-
tail mode of m=0 is so high and the threshold current is
around few tenth mA.

7. CONCLUSION
The simulation code for single-bunch instabilities was

developed and applied to the SPring-8 storage ring. No
longtidinal microwave instabilities can not seen and the
threshold of the transverse instabilities is a few mA and the
positive chromaticity increase the threshold current.
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