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Abstract

The diffraction modd of a cavity, suggested by Lawson
[1], Bane and Sands [2] is generalized to a step-out tran-
sition. Using this model, the high-frequency impedance is
caculated explicitly for the case that the transition step is
small compared with the beam-pipe radius. In the diffrac-
tionmodel for asmall step-out transition, thetota energy is
conserved, but, unlikethe cavity case, the diffracted waves
in the geometric shadow and the pipe region, in general,
do not aways carry equa energy. In the limit of small
step sizes, theimpedance derived from the diffraction model
agrees with that found by Balakin, Novokhatsky [3] and
also Kheifets [4]. Thisimpedance can be used to compute
the wake field of around collimator whose haf-apertureis
much larger than the bunch length, as existing in the SLC
final focus.

1 SHORT CAVITY (REVIEW)

The high-frequency impedance of acylindrically symmetric
short cavity structurein an otherwi se smooth vacuum cham-
ber pipe can be estimated by adiffractionmodel asdescribed
inRefs. [1, 2]. Itishelpful tofirst review thismoddl, before
generalizing it to a step-out transition.

Let b betheradius of thesmooth beam pipe, g the cavity
gap length, and d itsdepth. A schematicisshowninFig. 1.
As abeam current Jo = Jo exp(—iw(t — s/c)) enters the
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Figure 1: Schematic view of a short cavity

cavity along the beam pipe axis, adiffracted wave is gener-
ated at the cavity edge r = b. This diffracted wave propa
gates down the beam pipe while spreading out radially due
to diffraction. At alongitudinal distance s behind the en-
trance edge of the cavity, theradia spread of the diffracted

wave is about
1 As
Ay(s) ~ V7 1)
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where A = 2w¢/w. Inthe diffraction model of Refs. [1, 2,
5], thecavity gap length g isassumed to be short enough that
the wave has not spread out radialy to reach the outer wall
of the cavity. Thusthe outer cavity wall doesnot play arole
in determining the short range wake field, and the quantity
d does not enter the considerations.

In calcul ating the impedance of the above cavity struc-
ture, the wavelength A is assumed to be sufficiently short
that the diffracted wave populates only the radial region
closetor = b, and, in particular, neither penetrates much
into the depth of the cavity structure nor approachesthe pipe
axis. In this case, one can approximate the cylindrical ge-
ometry near the » = b region by a Cartesian geometry and
represent the incoming beam wave by a planar wave with
E, = —B, = —2Jy/(cb). The monopole longitudinal
impedance isthen found to be[2, 5, 6]

nonfZ @

Zo() = [+ sen(e) 5554 1]

where Zg = 377 2. Them # 0 longitudina and transverse
impedances z), and Z L are obtained by considering an mth
moment current J,, = J,, exp(—iw(t — s/c)). The corre-
sponding planar wave incident upon the cavity entranceis
Ey = —By = — i Jm cos mf, Where 6 isthe azimuth
at the cavity entrance. Thefinal resultis[2, 5]

Z 1 c
I (w) = 120 - 99
Zm(w) - [1 + sgn(w) Z] 71_3/2 bzm+1 |w| (3)

The transverse impedance follows from the Panofsky-

Wenzel theorem, Z (w) = ¢z, () /w. It has been shown
that exactly half of the diffracted wave energy is contained
in the geometric shadow region (outward diffracted), while
the other half is contained in the region propagating down
the pipe (inward diffracted) [2, 5].

2 STEP-OUT TRANSITION

Equations (2) and (3) apply at high frequencies and short
cavity lengths, whend > +/Ag/2/(2x). The purpose of
this paper isto extend the’ conventional’ diffraction model
just described to the case when the cavity gap length g is
long, and, thus, the above conditionisviolated. The cavity
structure in this case resembles a transition step in the vac-
uum chamber pipe. We further assume the step to be small,
i.e, b>> d, sothat we can till approximate the cylindrical
geometry by aplanar one.

Figure 2(a) displaysthe geometry near » = b. Shown
shaded istheregion popul ated by thediffracted wave. When



thelatter reachesthe outer radiusafter thestep, itisreflected
by the pipewall. This reflection can be represented by an
image beam current —J, as shown in Fig.2(b).
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Figure?2: a) Diffracted wavesnear astep-out transition; b) equiv-
alent geometry with image current.
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Figure 3: Diffraction of plane wave on a screen.

The diffracted wave isthen the same asthat for aplane
wave incident perpendicularly upon a screen, which is il-
lustrated in Fig. 3. The parts of the screen withy’ > d and
y < —d aretransparent to theincident wave, whilethe part
with —d < ' < disopague. The wave amplitude a an
observation point located a longitudinal distance s behind
the screen and at atransverse distance y from the pipe axis,
isproportional to

a(y, s) l/_: dy + /doo dy’l ewPle (4

where

1
D=Vs+(y-y)~s+-(y-v)

and we have adopted a scal ar wave model of the el ectromag-
neticwaves|[7] aswasdoneinthe’ conventional’ diffraction
model. Substituting Eq.(5) into Eq.(4) and dropping the os-
cillatory factor exp(iws/c), wefind

o0s) [/_ddy/+/doody/l exp [; (y— y)]
\/ﬂ{ 1= C(f+(9,8)) + C (- (v, 9))]

+i[1 = S (f+ (19)) + S (£ (u5))] |

where f4(y,s) = 1/5 (y £ d), and, by definition of the

Fresnd integrals,

C(z)+iS(z) = /Oz dt &'t/ (6)

with C(c0) = S(co0) = 1/2. The energy flux F(y, s) is
proportional to |a(y, s)|. By normalizing F(y, s) such that
for y — oo itisequd to theincident flux

c 2
Fly,9) > o= (B 4+ B) =%, ()
we obtain
Fg,9) = 2 {11~ Ol 9) + O (o)
+ L= S(F+ (9, 9)) + (- 5))]°} -(®)

Thetotal field energy contained in the diffracted wave pat-
ternisconserved [8],i.e, for dl s, we have

d 00
| awrwa+ [ Fwe-Ri=0. @

InFig. 4, theflux F(y, s)/ Fo isdepicted as afunction
of y/d for several values of & = d+/2/(Xs). Beforethe
diffracted wave reaches the outer cavity wall (s < 8w2d?/A
or « > 1/(2x)), theflux is about the same as in the con-
ventional diffraction model. By contrast, for s > 8w2d?/A
ora < 1/(2x), the reflection from the outer pipe wall be-
comes important. In thisregion the asymptotic expression
for F(y, s) reads

Fy,s) _ T L (T
—5 ™ 1-2a [cos (Ey ) + sin (Ey )] (20)
The second term on theright-hand side of Eq.(10) isasmall
correction term, so that the energy flux far from the cav-
ity entrance edgeis approximately equa to the unperturbed
value Fy. However, this does not mean the field energy in
the inward diffracted wave diminishes as the wave propa-
gates down the beam pipe, because the diffracted wave is
spreading and is occupying larger volume as it propagates.
To derive the impedance, we first calcul ate the energy
loss of the beam. Thisisequal tothe field energy stored in

the diffracted wave and, thus, it is proportional to

/Ody|a(y,s>|2+ / dyla(y, s) — a(oo, ) (11)
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Figure 4: Energy flux F/F, asafunction of transverse position
at various distances z o« 1/a? behind the step-out.

The first term in Eq.(11) is proportiona to the outward
diffracted wave energy in the geometric shadow region and
the second term represents the inward diffracted wave in
the piperegion. When expanding in o (after multiplication
with 1/2/(As)), thefirst term isfound to be: 2« — 4a? +
40® 4+ O(a?); and the second is: 2a — 4a® + O(a®) [8].
In the long-distance limit « < 1, or z >> 8w2d?/], the
two terms become equal, which means that sufficiently far
away from the step the outward diffracted and the inward
diffracted waves contain equal amounts of energy. Theloss
power for asmall step size (d < b) is, therefore, given by

d
Py~2 x 27b lim F(y,s) dy.

§— 00 0

(12)

Performing the integration for s > 242/, onefinds[8]:

4J3
Po ~ —Od
cb

With Fy = J2/(mb?c), the energy loss can be rewritten as
Py = 27b(Fy2d), which demonstrates that, in our mode,
thetotal diffracted-wave energy is equa to the energy inci-
dent on the screen of Fig. 3. This equivaence also follows
from Babinet’sprinciple[ 7], when one considerstheinverse
problem of a plane wave incident on a dlit of width 2d.
The loss power is related to the impedance via Py =

(Rez))J2, fromwhich

(13)

Zo
—d.
b
Unlike the short-cavity impedance of Eg. (2), the high-
frequency impedance for along cavity, or a step, isinde-
pendent of frequency w. Equation (14) agrees with the re-
sults of earlier trestments [3, 4] in the limit of small step

Rezl ~ (14)

sizesd < b. Itisintriguing that the impedance of Eq. (14)
can be obtained from the short-cavity impedance, Eq. (2),
by replacing the cavity length g with the distance 872d? /A
at which the diffracted wave reaches the outer beam-pipe
radius after the step (see Eqg. (2)).

In the same manner as for a short cavity, considering
mth-moment currents allows the extension of the analysis
tothem # 0 impedances. In this case theincident flux is

4 2 2
Frpo= ij cos*(m#),

(15)

and the loss power is obtained by integrating the diffracted
flux over the azimuth 6 with the final result:

8d
P, ~ J2
(1 + o) cbZm+1 7™

(16)

where 6o, denotes the Kronecker delta (6o, = 0 for m #
0). Equating P,, with the general expression (ReZ,','L)Jﬁl
yields the impedance for the mth-moment

2Z0d

ReZll ~ )
CEm ™ (1 1 Som) wb2m+T

(17)

For small step sizes d, the dipole impedance (m=1) so ob-
tained agrees with that derived by an entirely different ap-
proach in Ref. [9]. Thisimpedance can be used, for exam-
ple, to compute transverse collimator wake fields when the
apertures are larger than the bunch length, asisthe case in
the SLC fina focus [10].
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