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Abstract

The CERN PS Booster[2] uses a double r.f. system to
lengthen the bunches and reduce the transverse space-
charge tune shift. We present stability criteria for such
a system under conditions of strong beam loading. The
condition that al norma modes be exponentialy damped,
places constraints on the coefficients of the system char-
acteristic polynomial developed in the Laplace frequency
variable. For a sextic polynomial, as occurs with a dou-
bler.f. system, interacting with a singlebeam mode and no
feedbacks, there are 7 Routh conditionsand these are el uci-
dated and interpreted in this paper.

1 INTRODUCTION

Doubler.f. systemd[1] promotelongitudinal Landau damp-
ing and lengthen bunches so reducing the influence of
space-charge. Both these effects are beneficial in the PS
Booster[2] wherean h; = 5, ho = 10 system isinstalled
and h; = 1, hy = 2 isintended for LHC. Inevitably, the
complication of the control system becomes and the possi-
bility of beam-load related instability isdoubled. The anal-
ysis of Wang[3] for the SSC-LEB fails to distinguish be-
tween single-particle and centroid motionsand does not in-
clude the beam-phase loop; the present anaysis considers
both these issues.
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Figure1: Phasor relation between voltage and currents.

By expanding ther.f. cavity space and time dependence
as Fourier series, one may consider the charged particleto
interact in approximate synchronism with a system of trav-
elling waves. We assume sinusoidal carrier waves for the
harmonic components, varying as R[A,, (t)et™/*!] . Here
R isaninstruction to take therea part of acomplex quan-
tity. Weshall consider small modul ationsof thevoltage, but
large oscillations of the ion phase. Let us measure phases
with respect to the synchronousreference particle, asin fig-
ure 1. Let the components of cavity-gap voltage, generator
current and beam current be, respectively,

V”(t) = Vg(l—i—evn) ; evn:(avn+j¢vn,s) (l)

Ign(t) = Ign(l‘i'egn) ) egn:(agn +j¢gn78) 2
Ib”(t) = Il?n(l"i'ebn) ; ebn:(abn +j¢bn,s) (3)

Here a,, and ¢,, are amplitude and phase modulations, re-
spectively. The superfix 0 denotes steady state value; and
the subscript » indicates which harmonic component. Let
theinfintessimal ‘ current’ components due to an individua
charge be

61, = eI bis 4

1.1 Beam equation

Spexifically for doubleharmonic operation, the phase (mea:

sured at the fundamental) of an single particle compared
with the synchronous particle satisfies:

Gis+(Q/VOIRIVI6T + V26T, —(VI4+ V)] = 0. (5)

Here superfix * indicates complex conjugate, and the syn-

chrotron frequency is given by
02 — _h177s iqvlo
¢ 2t R? E,

1
;s = |lap——| <0. (6)
[ : 'y?]
R = average ring radius and p; = bending radius. The
equilibrium solutionis ¢; , = 0. Hence the synchronous
energy gainis:

AB,/q=2mp,R,B, = —R[VY+ VI . (7
It iscustomary to take
V? — Vloej(q)yl)s-l—ﬂ/Z) : Vg — Vzoej(¢y2)s+3ﬂ/2) ) (8)

For bunch-lengthening operation, one takes the first and
second derivatives of the restoring force (w.r.t. ¢; ,) to be
zero (evaluated at ¢; , = 0) —though thisis not essential.

2
Vlocos Dy ,e= Z—2V20cos Doyo s ; Vlosin Dy ,e= Z—iVQOSin NP
1 1
©

Given V", theequations (7, 9) are enough to determine the
relative amplitude and phase of the harmonic components.
To find the equation of motion for coherent oscillations,
we must form the ensemble average of (5): —(¢; ;) =

(VP )RIVALE / (2100) + V2 T35/ (2100) = (VI +V3)] . (10)
where the beam current components are
L = 2050 [T A(¢ o)™ P dg; .

Here Iy, isthed.c. component of thebeam current, A isthe
bunch shape. It is customary to take Ij, = I{ ei®n: as
the steady state, and thismust satisfy the relation:

(11)

0=RIVI(I;)" + V5(I3)" — (Vi + V3)2L0] . (12)



Now, let us consider small beam modulations about the
equilibrium; to first order we have:

0= 20Lodm. + (Q2/VOR x
[VII))" (ev1 + €51) + V5 (I35) (ev2 + €2)] - (13)

To simplify matters, consider the case that thereisno ampli-
tude modul ation of thebeam current (i.e. a;, = 0). Further
let us suppose arigid mode inwhich ¢y = 2¢41 .

1.2 Cavity equation

We now give the equations governing the steady state volt-
age and current in the cavity:

Y. V) =1L, +1},], Y,=[l—jtan¥,]/R, (14)

where Y, isthe admittance and, from detuning, tan ¥, =
Qn (w2, —n?w?)/(nww.,) . Here w,, isthe cavity reso-
nance frequency for thenthr.f. component, and R,, and @,
arethe shunt resistance and qudlity factor of that resonance,
respectively. It isconvenient to take:

121 = Iglej(¢g1,5+7r/2) ; 122 = Igzej(q)ﬁ’s'l'?m/z) . (15)

We may take real and imaginary parts to find the equi-
librium conditions. Often the cavities are operated as a
matched resistive load so that generator current and gap
voltageareinphase, i.e. ¢4y, o, = 0.

The next step is to find the evolution of small modula-
tions about the steady state. Provided that the modulation
frequency ismuch smaller than the carrier and that the cav-
ity quality factor islarge enough (i.e. @ > 100, say) then
the time varying voltage and current obey:

(Ton/Rn)(d/dt) + Y, Va =1 + Ly, (16)

Here ., = 2Q,/w., isthetime constant of the cavity res-
onance. We subtract the steady staterelation (14) tofind the
modulations:

Vol(7en/ Rn)(d/dt) + Yolewn = Ig,eqn + L epn (17)

We may compare real and imaginary parts to obtain the
equations of motionfor a,, and ¢, . .

2 NO CONTROL LOOPS

For the stability analysis, we form the Laplace transform of
the beam and cavity equationsw.r.t. the complex frequency
s, S0 asto give asystem of algebraic equations.

The state vector is (ay1, ¢ui,s, b1 .5, A2, Pu2s)-
The determinantal matrix

T4smy tan ¥y —Ypq cos Ty 0 0
— tan ¥ 1457y +Ypq sin @y 0 0
—Asin®y; —Acos Py s? 4 A Bsin @5  Bcos@po | = ()
0 0 +2Ypo cos By 1+ 57y tan Uy
0 0 —2Yyo sin @5 — tan ¥q 14579

(18)
Here A = A cos @41—2B cos @y Where A = Q211 /(2140)
and B = QX(VY/V)(Iy2/2150) and ®py = Pys 4o and
¢y = Py1 51 - Weintroduce dimensionless current ratios
Yyn = I, /10, and Y, = I, /1)), where I, = V) / R,.

2.1 Characteristic polynomial

We find a sextic equation which is satisfied by the normal
mode frequencies, that is

co + 15 4 957 + e35° 4+ a5t + e55° + 55" =0 (19)
where the polynomial coefficients are:

e = (nm)’

2 mo(m1 + 72)
()[4 + (r2/m1) sec? Uy + (r1/72) sec? Wy & (r1m2)A]
cs 2+ )nnA+n sec? Uy + 1 sec? U]
e = sec? Wy sec® Uy + 7'22 sec? U1(Ap — A(1/2)Yp sin 20, )+
7'12 sec? W (Ap — BYposin 2Us) 4+ 4m 1Ay
a1 = 2[r sec? U1(Ap — A(1/2)Yp sin 20, +
1 sec? W2 (Ap — BYyo sin 2W5)]
co = sec’ ¥y sec? Wo[A — (1/2)AYs sin 2¥; — BYj, sin 205

Cs

C4

What is curious, and surprising, isthat A > 0 is not a necessary
condition for the coefficientsto be greater than zero.

It isworth discussing ¢o in somedetail. The coefficient can be-
come zero in avariety of ways. It istempting to write

co/2 = sec? \IIQA(sec2 U1 cos Pp1 — Yer tan ¥q)
— sec’ U, 2B(sec2 Wy cos Ppz + Yip tan W)  (20)
which suggeststhat ¢ > 0 when simultaneously,
2 cos Dy 2 cos 2@
< —/— Yo > —— . 21
Yoo < sin 2V and b2 = —sin 2V, (@)
However, in the bunch lengthening mode A =~ 0 and so
Acos ®p1 & 2B cos 29, . Consequently, ¢o > 0 if
— Yo sin 2W5 cos ®p1 > Yir sin 2V cos Ppe (22)

which is a constraint on the relative magnitudes of Y3 and Yz .
The equality will apply if Y31 = Y32 and the cavities are detuned
to present pure resistive loads and the synchronous phase angle is
small; and thisis roughly the casein the CERN PS Booster.

An alternative form for ¢; is

2[A (2 sec? W4 sec? U, )— (A Y tan U142 B 7 YiotanU)] .
(23)
An alternative form for ¢z is

4 sec? Uy sec® Uy — [7'22AYb1 tan Uy + 72 2BY5 tan U]

+ Anr[d+ (r2/m) sec? Uy + (r1/72) sec? U] (24)
Given that A = 0 in the bunch lengthening mode, the conditions
¢z > 0andc; > 0imply further constraints on the relative mag-

nitude of Yz: and Y32 and suggest 1 > - isadesirablecondition
for stability.

2.2 Routh determinants

RH[1], RH[2], and RH[3] > 0 are all satisfied automatically
provided m, > > 0. RH[7]> 0 isidentical with¢q > 0.
RH[4]: (75 sec® ¥y — rf sec® W2)? 4 mime(r1 + )%

[4(m sec? U 47 sec2\112)—|—(A7'23Yb1tan\Ifl —|—2B7’13 YiotanW¥s)]>0 .



This expression is exact and limits the amount of negative detun-
ing. However, we may expect RH[4] to be satisfied in most prac-
tical cases, asusually Q277 < 1and Q275 < 1 and typically
Ye1 S |tan\111| man S |tan\112| .
RH[5]: 256(r172)*(m14m) x[...] > 0isvery long, but under
the conditions @2 — 0, 1 — 0, theterm .. .] simplifiesto
16(7’17’2)2(7'1 + TQ)[ATQB/bl tan \111 + 2BT1§/b2 tan \If2]+

sec? Uy sec? Voldrm(m + m2)(m sec? Uy 4+ 1 sec? Us)+
+2(m 72)2(A722 Y31 tan Uy + 2B7'12 Yio tan W)+
AA(7 7'2)2(7'1 + 7'2)[A7'23Yb1 tan ¥y + 287 Yip tan Wol+
—TT (ATQB’YM tan g + 2B7'13Yb2 tan \112)2—1—
1T [AT;}/M tan Wy (4 + A7'22) sec? Wyt
—|—2BT{1}/b2 tan Wy (4 + Arf) sec? Wol+
(m1 7'2)2AYb1 tan ¥ [(47'12 —8n(m + 1)+ ATE 7'22) sec® U,
—27% sect Uo] + (7'22 sec? Uy — 7 sec? \112)2—1—
(m1 7'2)22BYb2 tan \112[(47'22 —8r (1 + 1)+ Ar? 7'22) sec? Uy
—275 sec* Uq]. (25)
Provided that Q% < 1 and ®;; = 0 RH[5] is positive on the
matched generator curve. For exact results, we need arelation be-
tween Y32 and Yz for given R & R, plusgenerator conditions.
RH[6]: w5 (r + m)[dmim(r + m) + w5 sec® Uy +
m$ sec® U3] x [....]. Theterm[.. ] istoo long to record here.

2.3 Approximations

L et ustruncate the coefficientsto dominant terms and then evalu-
ate approximationsfor Routh determinants RH[5] and RH[6]. Let
usassume Q2mm < 1and A — 0 and drop these terms from
the polynomial coefficients. cs, ¢s, ¢1 and ¢q are unchanged.

ca = mim[d+ (r)m)sec® Uy 4 (11/m2) sec® o] (26)
ez & 2m sec® Uy + 7 sec? V) (27)
2 A sec® Wysec® Uy . (28)

RHI[5]: After setting ®:1 = 0, 12 = 0 onefindsRH[5]> 0 for
most valuesof Y31, Yz andtuning angles, andin particular for the
limit of large beam load and large detuning Y21 ~ | tan ¥4 | and
Y2 & |tan W2|. Further, RH[5]> 0 below and on the matched
generator curves Yy, = tan ¥y, Yio = —tan ¥, when Q277 <
1and Q272 « 1. Lastly, ¢1 > 0 and/or ¢, > 0 are not necessary
conditionsfor RH[5]> 0.

RH[6] is avery complicated expression. However, in the limit
that ¢o and ¢; are small (i.e. the bunch lengthening mode), so that
powers and products are negligible, then RH[6] is equal to

16[c1 sec? Uy sec® Uy — 2¢o(T2 sec? Uy +  sec? Wy)]x

[Arim2(ri+72)(m sec? Wy 47 sec? \112)+(Tl2$ec2 \112—72256c2\111)2]

+8coc1TiTE [8(m1 —1—72)2—1—2[(7'23/7'1) sec? Uy —|—(7'13/7'2) sec? Ty]x
(29)
N.B. We made no assumptions about ®; or ®5. Clearly, c1 > 0

or ¢o < 0isanecessary conditionfor RH[6]> 0. If ¢cg x ¢1 — 0,
then the criterion becomes

(2 — 1) sec? Uy + m(m — ) sec? T,].

c1sec? Uy sec® Uy > 2¢o(T2 sec? Uy + 7 sec’ W)  (30)
and SO co+/T1 72 < ¢1/2 assuming T & 72, or explicitly
A Y1 cos? Wy sin2W + 2B7 Yo cos? Vs sin2Ws >0 . 3y

If there is no constraint on moduli thenc; # 0oreco # 0isa
necessary condition for RH[6]+ 0.

3 WITH PHASE LOOP

We supplement previousworking with the beam-phaseloop equa-
tion: s¢g1,c = Kp(de1,s — ¢o1,e) = Kpde1,01 . Inthe caseof
a single RF system, this choice of the sign of K, would lead to
the conclusion K, > 0. In this present model, there is no control
over the phase of the higher harmonic, and ¢ 42, = 0. Dueto the
presenceof the loop, the general steady state generator conditions
have been substituted in the determinant.
Thisleadsto a heptic equation

do+dis+dos® +das® +dss* +dss® +des® +drs” =0 (32)

where the polynomial coefficientsare: d- =cg, ds =cs,

ds= ca+ Kpmi 2 33
di= c3+ Kpm[211 + 7 (sec2\111 — Y51 tan ¥q)] (34
ds= c2 + Kp[m sec? Up — 2B 72

+271 (sec2 U1 — Yi tan ¥q)] (35
do= ¢1 + [(p[(sec2\111 — Y1 tan Uy) X

(sec2\112 — 2B7'22) —4Bmim] (36)
di = co +2BK 212 (Yeitan Uy — sec2\111)

—71(Yaztan Wy + sec’ U3)] (37)

do = 2BK p(—sec® ¥y + Yy tan Wy ) (sec® Wy + Yio tan W5 (38)

Coefficient doy hasimportant implications. Either
¢ K,<0and [sec2\111 +...]>0and(cos Ppz...)> 0

o K,>0and Yy >sec Uy /sin(U1—Pp1) & (cos Ppa...) >
0, or [sec2\111 4+ ...]>08& Yz < —2cos P2/ sin2¥5 .

On the matched generator curves¢q is equal
—BK,[1+ tan®s tan\Ifl](cos2(I>b2 —sin?®p, tan> Wy) sec By
(39
which is negative unless K, x (—tan®¥s 4 1/ tan®®52) < 0 .
3.1 Routh determinants

RH[1] and RH[2] > 0 are satisfied automatically. RH[8] isiden-
tical withdo > 0. RH[3]:

[8T172(m1 + 72) + 275 sec® Uy + 277 sec® Ut

—1—[(137'17'23(1 + Yy tan ¥y — tan® V)] > 0
is always satisfied provided ¥; > 0 and

(40)

Kpm < 2[1+ (7'1/7'2)3 tan? W,/ tan? ¥q].

RH[4]: 0 < Kpm1 < 1and0 < Kpm < 1 will beasufficient
condition for stability in most cases. Contrarily inthelimit of large

gain onefinds:
RH[4] —[x’;7'127'§(sec2 Uy — Vi tan \111)2 > 0; (4

this condition cannot be met, and so K, must be limited.
RHI[5,6,7] are too lengthy to report or comment upon.
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