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Abstract

The CERN PS Booster[2] uses a double r.f. system to
lengthen the bunches and reduce the transverse space-
charge tune shift. We present stability criteria for such
a system under conditions of strong beam loading. The
condition that all normal modes be exponentially damped,
places constraints on the coefficients of the system char-
acteristic polynomial developed in the Laplace frequency
variable. For a sextic polynomial, as occurs with a dou-
ble r.f. system, interacting with a single beam mode and no
feedbacks, there are 7 Routh conditions and these are eluci-
dated and interpreted in this paper.

1 INTRODUCTION

Double r.f. systems[1] promote longitudinal Landau damp-
ing and lengthen bunches so reducing the influence of
space-charge. Both these effects are beneficial in the PS
Booster[2] where an h1 = 5; h2 = 10 system is installed
and h1 = 1; h2 = 2 is intended for LHC. Inevitably, the
complication of the control system becomes and the possi-
bility of beam-load related instability is doubled. The anal-
ysis of Wang[3] for the SSC-LEB fails to distinguish be-
tween single-particle and centroid motions and does not in-
clude the beam-phase loop; the present analysis considers
both these issues.

Figure 1: Phasor relation between voltage and currents.

By expanding the r.f. cavity space and time dependence
as Fourier series, one may consider the charged particle to
interact in approximate synchronism with a system of trav-
elling waves. We assume sinusoidal carrier waves for the
harmonic components, varying as R[An(t)e

+nj!t] . Here
R is an instruction to take the real part of a complex quan-
tity. We shall consider small modulations of the voltage, but
large oscillations of the ion phase. Let us measure phases
with respect to the synchronous reference particle, as in fig-
ure 1. Let the components of cavity-gap voltage, generator
current and beam current be, respectively,

Vn(t) = V
0
n(1 + evn) ; evn = (avn + j�vn;s) (1)

Ign(t) = I
0
gn(1 + egn) ; egn = (agn + j�gn;s) (2)

Ibn(t) = I
0
bn(1 + ebn) ; ebn = (abn + j�bn;s) (3)

Here an and �n are amplitude and phase modulations, re-
spectively. The superfix 0 denotes steady state value; and
the subscript n indicates which harmonic component. Let
the infintessimal ‘current’ components due to an individual
charge be

�In = enj�i;s : (4)

1.1 Beam equation

Specifically for double harmonic operation, the phase (mea-
sured at the fundamental) of an single particle compared
with the synchronous particle satisfies:
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Here superfix * indicates complex conjugate, and the syn-
chrotron frequency is given by
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Rs = average ring radius and �s = bending radius. The
equilibrium solution is �i;s � 0. Hence the synchronous
energy gain is:

�Es=q = 2��sRs
_Bs = �R[V0

1 +V
0
2] : (7)

It is customary to take

V
0
1 = V 0

1 e
j(�v1;s+�=2) ; V0

2 = V 0
2 e

j(�v2;s+3�=2) : (8)

For bunch-lengthening operation, one takes the first and
second derivatives of the restoring force (w.r.t. �i;s) to be
zero (evaluated at �i;s = 0) – though this is not essential.
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Given V 0

1 , the equations (7, 9) are enough to determine the
relative amplitude and phase of the harmonic components.

To find the equation of motion for coherent oscillations,
we must form the ensemble average of (5): �h��i;si =
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where the beam current components are

Ibn = 2Ib0
R +�
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�(�i;s)e

nj�i;sd�i;s : (11)

Here Ib0 is the d.c. component of the beam current, � is the
bunch shape. It is customary to take I0bn = I0bne

j�bn;s as
the steady state, and this must satisfy the relation:
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Now, let us consider small beam modulations about the
equilibrium; to first order we have:
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To simplifymatters, consider the case that there is no ampli-
tude modulation of the beam current (i.e. abn � 0). Further
let us suppose a rigid mode in which �b2;s = 2�b1;s.

1.2 Cavity equation

We now give the equations governing the steady state volt-
age and current in the cavity:

YnV
0
n = I

0
gn + I0bn] ; Yn=[1�j tan	n]=Rn (14)

where Yn is the admittance and, from detuning, tan	n=
Qn(!

2
cn�n2!2)=(n!!cn) . Here !cn is the cavity reso-

nance frequency for thenth r.f. component, andRn andQn

are the shunt resistance and quality factor of that resonance,
respectively. It is convenient to take:

I
0
g1 = Ig1e

j(�g1;s+�=2) ; I0g2 = Ig2e
j(�g2;s+3�=2) : (15)

We may take real and imaginary parts to find the equi-
librium conditions. Often the cavities are operated as a
matched resistive load so that generator current and gap
voltage are inphase, i.e. �gn;vn � 0.

The next step is to find the evolution of small modula-
tions about the steady state. Provided that the modulation
frequency is much smaller than the carrier and that the cav-
ity quality factor is large enough (i.e. Q > 100, say) then
the time varying voltage and current obey:

[(�cn=Rn)(d=dt) +Yn]Vn = Ign + Ibn : (16)

Here �cn = 2Qn=!cn is the time constant of the cavity res-
onance. We subtract the steady state relation (14) to find the
modulations:

V
0
n[(�cn=Rn)(d=dt)+Yn]evn = I

0
gnegn + I

0
bnebn (17)

We may compare real and imaginary parts to obtain the
equations of motion for avn and �vn;s .

2 NO CONTROL LOOPS

For the stability analysis, we form the Laplace transform of
the beam and cavity equations w.r.t. the complex frequency
s, so as to give a system of algebraic equations.

The state vector is (av1; �v1;s; �b1;s; av2; �v2;s).
The determinantal matrix�����

1 + s�1 tan	1 �Yb1 cos �b1 0 0

� tan	1 1 + s�1 +Yb1 sin �b1 0 0

�A sin �b1 �A cos �b1 s2 + � B sin �b2 B cos �b2
0 0 +2Yb2 cos �b2 1 + s�2 tan	2
0 0 �2Yb2 sin �b2 � tan	2 1 + s�2

�����=0

(18)
Here�=A cos�b1�2B cos �b2 where A = 
2

sIb1=(2Ib0)
and B = 
2

s(V
0
2 =V

0
1 )(Ib2=2Ib0) and �b2 � �v2;b2 and

�b1 � �v1;b1 . We introduce dimensionless current ratios
Ygn = I0gn=I

0
vn and Ybn = I0bn=I

0
vn where I0vn = V 0

n =Rn.

2.1 Characteristic polynomial

We find a sextic equation which is satisfied by the normal
mode frequencies, that is

c0 + c1s + c2s
2 + c3s

3 + c4s
4 + c5s

5 + c6s
6 = 0 (19)

where the polynomial coefficients are:

c6 = (�1�2)
2

c5 = 2�1�2(�1 + �2)

c4 = (�1�2)[4 + (�2=�1) sec
2 	1 + (�1=�2) sec

2 	2 + (�1�2)�]

c3 = 2[(�1 + �2)�1�2�+ �2 sec
2	1 + �1 sec

2 	2]

c2 = sec2	1 sec
2 	2 + �

2

2 sec
2 	1(�b � A(1=2)Yb1 sin 2	1)+

�
2

1 sec
2 	2(�b � BYb2 sin 2	2) + 4�1�2�b

c1 = 2[�2 sec
2 	1(�b � A(1=2)Yb1 sin 2	1) +

�1 sec
2 	2(�b � BYb2 sin 2	2)]

c0 = sec2	1 sec
2 	2[�� (1=2)AYb1 sin 2	1 �BYb2 sin 2	2]

What is curious, and surprising, is that � > 0 is not a necessary
condition for the coefficients to be greater than zero.

It is worth discussing c0 in some detail. The coefficient can be-
come zero in a variety of ways. It is tempting to write

c0=2 = sec2	2A(sec
2 	1 cos�b1 � Yb1 tan	1)

� sec2 	12B(sec2 	2 cos�b2 + Yb2 tan	2) (20)

which suggests that c0 > 0 when simultaneously,

Yb1 �
2 cos �b1

sin 2	1

and Yb2 �
2 cos 2�b2

� sin 2	2

: (21)

However, in the bunch lengthening mode � � 0 and so
A cos �b1 � 2B cos 2�b2 . Consequently, c0 > 0 if

�Yb2 sin 2	2 cos �b1 � Yb1 sin 2	1 cos �b2 (22)

which is a constraint on the relative magnitudes of Yb1 and Yb2 .
The equality will apply if Yb1 � Yb2 and the cavities are detuned
to present pure resistive loads and the synchronous phase angle is
small; and this is roughly the case in the CERN PS Booster.

An alternative form for c1 is

2[�(�2 sec
2	1+�1 sec

2	2)�(A�2Yb1tan	1+2B�1Yb2tan	)] :

(23)
An alternative form for c2 is

+ sec2 	1 sec
2 	2 � [�22AYb1 tan	1 + �

2

1 2BYb2 tan	2]

+ ��1�2[4 + (�2=�1) sec
2 	1 + (�1=�2) sec

2 	2] : (24)

Given that � � 0 in the bunch lengthening mode, the conditions
c2 > 0 and c1 > 0 imply further constraints on the relative mag-
nitude of Yb1 and Yb2 and suggest �1 > �2 is a desirable condition
for stability.

2.2 Routh determinants
RH[1], RH[2], and RH[3] > 0 are all satisfied automatically

provided �1; �2 > 0. RH[7]> 0 is identical with c0 > 0.
RH[4]: (�22 sec

2	1 � �21 sec
2	2)

2 + �1�2(�1 + �2)�

[4(�2 sec
2	1+�1 sec

2	2)+(A�32Yb1tan	1+2B�31 Yb2tan	2)]>0 :



This expression is exact and limits the amount of negative detun-
ing. However, we may expect RH[4] to be satisfied in most prac-
tical cases, as usually 
2

s�
2

1 � 1 and 
2

s�
2

2 � 1 and typically
Yb1 � j tan	1j and Yb2 � j tan	2j .

RH[5]: 256(�1�2)2(�1+�2)�[: : :] > 0 is very long, but under
the conditions �b2 ! 0;�b1 ! 0, the term [: : :] simplifies to

16(�1�2)
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2
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2

2 � 8�1(�1 + �2) +��21 �
2

2 ) sec
2	1

�2�22 sec4 	1] : (25)

Provided that 
2

s�1�2 � 1 and �b1 = 0 RH[5] is positive on the
matched generator curve. For exact results, we need a relation be-
tween Yb2 and Yb1 for given R1 & R2 , plus generator conditions.

RH[6]: �31 �
3

2 (�1 + �2)[4�1�2(�1 + �2) + �32 sec
2	1 +

�31 sec
2 	2]� [::::] . The term [: : :] is too long to record here.

2.3 Approximations
Let us truncate the coefficients to dominant terms and then evalu-
ate approximations for Routh determinants RH[5] and RH[6]. Let
us assume 
2

s�1�2 � 1 and � ! 0 and drop these terms from
the polynomial coefficients. c6, c5, c1 and c0 are unchanged.

c4 � �1�2[4 + (�2=�1) sec
2 	1 + (�1=�2) sec

2 	2] (26)

c3 � 2(�2 sec
2 	1 + �1 sec

2 	2) (27)

c2 � sec2	1 sec
2 	2 : (28)

RH[5]: After setting�b1 = 0, �b2 = 0 one finds RH[5]> 0 for
most values ofYb1; Yb2 and tuning angles, and in particular for the
limit of large beam load and large detuning Yb1 � j tan	1j and
Yb2 � j tan	2j. Further, RH[5]> 0 below and on the matched
generator curves Yb1 = tan	1, Yb2 = � tan	2 when 
2

s�
2

1 �
1 and 
2

s�
2

2 � 1. Lastly, c1 > 0 and/or c0 > 0 are not necessary
conditions for RH[5]> 0.

RH[6] is a very complicated expression. However, in the limit
that c0 and c1 are small (i.e. the bunch lengthening mode), so that
powers and products are negligible, then RH[6] is equal to

16[c1 sec
2 	1 sec

2 	2 � 2c0(�2 sec
2	1 + �1 sec

2 	2)]�

[4�1�2(�1+�2)(�2 sec
2	1+�1 sec

2	2)+(�21 sec
2	2��22 sec2	1)

2]

+8c0c1�
2

1 �
2

2 [8(�1+�2)
2+2[(�32 =�1) sec

2 	1+(�31 =�2) sec
2 	2]�

�2(�2 � �1) sec
2
	1 + �1(�1 � �2) sec

2
	2] : (29)

N.B. We made no assumptions about �b1 or �b2 Clearly, c1 > 0

or c0 < 0 is a necessary condition for RH[6]> 0. If c0� c1 ! 0,
then the criterion becomes

c1 sec
2 	1 sec

2	2 > 2c0(�2 sec
2 	1 + �1 sec

2	2) (30)

and so c0
p
�1�2 < c1=2 assuming �1 � �2, or explicitly

A�1Yb1 cos
2	1 sin2	1 + 2B�2Yb2 cos

2	2 sin2	2>0 : (31)

If there is no constraint on moduli then c1 6= 0 or c0 6= 0 is a
necessary condition for RH[6]6= 0.

3 WITH PHASE LOOP
We supplement previous working with the beam-phase loop equa-
tion: s�g1;s = Kp(�b1;s � �v1;s) = Kp�b1;v1 . In the case of
a single RF system, this choice of the sign of Kp would lead to
the conclusionKp > 0. In this present model, there is no control
over the phase of the higher harmonic, and �g2;s � 0. Due to the
presence of the loop, the general steady state generator conditions
have been substituted in the determinant.

This leads to a heptic equation

d0+d1s+d2s
2+d3s

3+d4s
4+d5s

5+d6s
6+d7s

7 = 0 (32)

where the polynomial coefficients are: d7=c6, d6=c5,

d5= c4 +Kp�1�
2

2 (33)

d4= c3 +Kp�2[2�1 + �2(sec
2	1 � Yb1 tan	1)] (34)

d3= c2 +Kp[�1 sec
2 	2 � 2B�1�

2

2

+2�2(sec
2 	1 � Yb1 tan	1)] (35)

d2= c1 +Kp[(sec
2	1 � Yb1 tan	1)�

(sec2	2 � 2B�22 )� 4B�1�2] (36)

d1= c0 +2BKp[2�2(Yb1tan	1 � sec2	1)

��1(Yb2tan	2 + sec2	2)] (37)

d0=2BKp(�sec2	1+Yb1tan	1)(sec
2	2+Yb2tan	2)(38)

Coefficient d0 has important implications. Either

� Kp<0 and [sec2	1 + : : :]>0 and (cos �b2 : : :)> 0

� Kp> 0and Yb1>sec 	1= sin(	1��b1) & (cos �b2 : : :)>

0, or [sec2	1 + : : :]>0 & Yb2<�2 cos�b2= sin2	2 .

On the matched generator curves c0 is equal

�BKp[1+tan�b1 tan	1](cos
2�b2� sin2�b2 tan

2	2) sec �b2

(39)
which is negative unless Kp � (� tan2	2 + 1= tan2�b2) < 0 .

3.1 Routh determinants
RH[1] and RH[2] > 0 are satisfied automatically. RH[8] is iden-
tical with d0 > 0. RH[3]:

[8�1�2(�1 + �2) + 2�32 sec
2 	1 + 2�31 sec

2 	2+

+Kp�1�
3

2 (1 + Yb1 tan	1 � tan2 	1)] > 0 (40)

is always satisfied provided 	1 � 0 and

Kp�1 < 2[1 + (�1=�2)
3
tan

2
	2= tan

2
	1] :

RH[4]: 0 � Kp�1 < 1 and 0 � Kp�2 < 1 will be a sufficient
condition for stability in most cases. Contrarily in the limit of large
gain one finds:

RH[4] / �K2

p�
2

1 �
5

2 (sec
2	1 � Yb1 tan	1)

2
> 0 ; (41)

this condition cannot be met, and so Kp must be limited.
RH[5,6,7] are too lengthy to report or comment upon.
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