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1 INTRODUCTION

The propagation of electromagnetic waves in periodic, di-
electric structures became a widely investigated subject.
The photonic bands concept [1] or new types of localized
states [2] are consequences of such phenomena.

In condensed matter systems with scatterers periodically
arranged, the propagationis naturally described by a vector
version of the band theory [1].

It isaso well known that dimensionality plays a major
role in the behavior of strongly scattering systems. The
lower the dimension, the easier it is to have band gaps (a
certainty in 1D). The theory of waves in arandom medium
suggeststhat all statesarelocalizedin 1D and marginally lo-
calized in2D. For 3D itisgenerally believed that amobility
edge exists.

The case of microwave propagationin strongly scattering
dielectriclatticesis experimentally and theoretically inves-
tigated [3], [4].

However, our work solvesadifferent problem: analyzing
the el ectromagnetic wave propagation in agiven dielectric,
periodical structure which has a defect, obtaining the pho-
tonic band structure and the spatial distribution of the trans-
mitted power.

The numerical solution of this case is obtained in two
steps:

a) computing the photonic band structure by using a
proper version of the band theory;

b) computing the spatia distributions of the electric and
magnetic fields, aswell as of thetransmitted power, by using
anorigina version of the” coll ocation method”, for the case
of coupled differential equations and an infinite number of
independent variables.

2 THEORY AND SIMULATIONS

The periodical structure we studied consists of a square lat-
tice of dielectric rods (having diel ectric constant £1 ) imbed-
ded in amedium with an e, di€lectric constant.

For agenerd 3D case, oneobtainsfrom Maxwell’sequa
tions, by standard cal cul ations and using the condition that
the eectric field points along the "z” axis, the following
scalar 2D wave equation:

(Vite(P)wB)y(7)=0 (1)

The dielectric constant distribution is given in our case
by:

a) e = g, for ‘(a:,qn — a:?)z + (y,qn — y?)z‘ < a?

b) ¢ = e,, for therest of the domain,

where;

{=2,4%},i = 1,N isaprimary division of the 2D-
domain, defined by the centers of the dielectric rods;

{=2,,42,},m =1, M isthe secondary division and the
working one, defined by the " collocation” points (M >>
N) which are not equidistant.

Thedirection of propagation % may bechoseninvarious
wayss, therefore being necessary to establish the connection
between the coordinates of the two lattices described pre-
vioudly and two new lattices: {z;, v; } , {zm, ym }, Obtained
by rotating the old ones such asthe y axesto point along .

With the new coordinates, the wave equation is:

2 2
%—i—%—i—wze(x,y)d):O 2

We seek itssolution (z, y) asalinear combination over

aset of suitable orthogonal functions¢., (z):

M

b (2,9) = Y ca(y) 6n (o) ©)

n=1

Thechoice of ¢, (z) depends on theboundary conditions
and the symmetry of the guiding structure. In our case, the
Laguerre - Gauss functions are the most appropriate:

bn(2) = An—1Ln_1(az) - exp <_%a2x2> (4)

where A,,_isthenormalization constant and « isa param-
eter which can be chosen arbitrarily, but its choice crucially
influences the accuracy for a given value of M.

The expansion in equation (3) must satisfy exactly the
differential equation (2) at M "collocation points’. These
points are chosen such that they are zeroes of ¢ar41:

LM (aa:j) =0 ,j = 1, ceey M (5)

the solutionsbeing well documented in literature.

Writing the Helmholtz equation (2) at each of these col-
location points, we obtain aset of M total differential equa-
tions which can be written in matrix form:

d?v

W—i-D—I-R\I’:O (6)



where: (¥ (y)); = ¥ (2:,9), (R(9));; = w2 (i, ) 8,

The expression in (6) may aso be written as:
dz—\Il +S¥(y)=0 (7
dy? vI=

if: S = BQ~! + R(y), with B;; = 5%| andQ;; =
¢ (@:).

We made no approximation in deriving (7) except that
M isfinite. The matrix total differentia equation can be
now solved as an initial value problem using any standard
method.

The constraintsimposed by the periodicity of the solution
in the initial coordinates ({z?, 9 }) give rise to the equar

tionswhich define the photonic band structurew (?) .

We must underlinethat we did not use average or smooth-
ing didectric constantsasin [1], [ 3] and that the computing
time and the efficiency arerea advantages of our approach.

3 RESULTSAND DISCUSSIONS

If we creste a defect (amissing rod at (o, yo)) the band
structure is clearly changed in comparison with the case
whenwe have atotally periodic structure, the solution and
the spatia power distribution having also different shapes.
Thisisthe phenomenon which allows the application stud-
ied in our work: the accel eration wakefield modes.

The electric field has a strong variation in the neighbor-
hood of the defect. The great values of the field allow the
application of thiseffect in producing particle accel eration
structures. The particle beam must point exactly along the
axis of themissing rod from the 3-D lattice, thusinteracting
with the generated field.
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