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Abstract

This paper discusses the operating issues for an accelera-
tor resonantly coupled with an energy storage (ARES) for
KEKB. We have obtained transfer functions of the ARES.
The tuning control methods are examined, while taking pos-
sible errors into account. The transient response of the
ARES to a bunch-gap is also discussed.

1 INTRODUCTION

In a large e+e− storage ring with an extremely high beam
current, the accelerating mode itself can excite a strong lon-
gitudinal coupled-bunch instability. In order to solve this
problem for KEKB [1], an ARES scheme was devised [2].
The ARES is a three-cavity system where an accelerating
(a-) cavity couples with an energy storage (s-) cavity oper-
ating in a high-Qmode via a coupling (c-) cavity in between.
The c-cavity is equipped with a damper, which reduces the
loaded-Q value of the c-cavity to below 100 to damp the
parasitic 0 and π modes.

The resonant frequency of the a-cavity (ωa) should be de-
tuned in order to compensate for the reactive component of
the beam loading, while that of the c- (ωc) and s-cavities
(ωs) should be kept at the operating frequency (ωrf ) [2].
Since the s-cavity has a very highQ-value, ωs must be con-
trolled so as to compensate for any change due to thermal
expansion or other effects. Therefore, two tuning control
loops are required: one is for the a-cavity and the other is
for the s-cavity.

It should be noted that the ARES will be operated un-
der such a condition that the three cavities are resonantly
coupled, and their Q-values are different from each other
by three orders of magnitude. Therefore, the tuning sys-
tem should be studied quantitatively, by taking any possi-
ble errors into account. In particular, (1) the two tuners
are no longer independent: one tuning loop can affect the
other, and (2) if a high field is excited in the c-cavity, a large
amount of RF power is extracted to the c-cavity damper. It
not only reduces theQ-value of the operatingπ/2 mode, but
can damage the load which terminates the damper.

Another issue regarding the operation of the ARES is the
transient responses. In particular, the response to a bunch-
gap, which will be introduced to avoid ion-trapping, should
be studied. The bunch-gap modulates the bunch position
from the collidingpoint, resulting in a luminosity reduction.
In addition, it modulates the power to the c-cavity damper:
the peak power to the load can be increased.

2 TRANSFER FUNCTION OF THE ARES

In the coupled-resonator model, the ARES is expressed in
terms of three simultaneous differential equations [2]. By
Laplace-transforming them, we obtain the following alge-
braic equations in the Laplace region:
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where Xa(p), Xc(p), Xs(p), Ib(p) and Ig(p) are the
Laplace transforms of the cavity voltage (xa(t), xc(t),
xs(t)), the beam current, and the generator current, respec-
tively. (Here, xa is the accelerating voltage, and xc and xs
are defined in such a way that |x2

a|, |x
2
c| and |x2

s| are pro-
portional to the stored energy in each cavity.) ka and ks
are the coupling constant between the a- and c-cavities, and
between the s- and c-cavities, respectively. βs is the input
coupling to the s-cavity. (The input power is fed through
the s-cavity.) From the definition of xµ (above), the shunt
impedance of the s-cavity (Rs) is related to that of the a-
cavity (Ra) as ωaRa/Qa = ωsRs/Qs.

Equations 1 — 3 are solved as:
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3 TUNING SYSTEM

Figure 1 shows a schematic view of the RF control system
examined here. In addition to the tuning loops, it has a phase
lock loop (PLL) and an auto level control loop (ALC) to
keep the phase and amplitude of the voltage in the a-cavity
Xa(p) constant.

Figure 1: Block diagram of the tuningsystem with feedback
loops examined for the ARES.

First, we consider the case in which the tuning controls
for the a- and s- cavities are off, while PLL and ALC for the
a-cavity are working. Given Xa(p), ωa, ωc and ωs, we ob-
tainXc(p) andXs(p) from Eqs. 1 and 2. Since ωs is not in-
cluded in these equations,Xc(p) andXs(p) are independent
of ωs. In particular, the relative phases between the a-, c-,
and s-cavities are independent ofωs. Figure 2 (upper) shows
the phase of each cavity relative to the generator power (φag,
φcg and φsg), as a function of ωs. (Ig(p) is calculated from
Eq. 3.) On the other hand, Xc(p) depends on ωa. Although
Xs(p) depends on ωa, as shown in Eq. 2, the dependence
is small, because the amplitude of Xc(p) is much smaller
than that of Xa(p) for the operating mode. As a result, the
relative phases between the c- and other cavities (φac and
φcs) depend on ωa, as shown in Figure 2 (lower). The re-
sults suggest that φac or φcs should be used for the a-cavity
tuning control.
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Figure 2: Phase in the cavity with PLL and ALC on: (upper)
as a function of ωs, and (lower) as a function of ωa.

Next, we include the a- and s-tuning loops, while taking
possible errors into account. Since the response of the PLL
and ALC is usually much faster than the tuning loops, we
simply assume thatXa(p) is constant. We examined differ-
ent methods for the tuning control, as follows (see Figure 1):

1. control the s-tuner according to φsg, and the a-tuner
according to φac;

2. control the s- and a-tuners according to φsg and φag ,
respectively; and

3. measure the temperature of the s-cavity and move its
tuner accordingly, while the a-tuner is controlled ac-
cording to φag.

The last method uses a feed-forward method for the s-tuner,
while the others are feedback loops based on the relative
phases. Given Xa(p), ωc, and the errors for the tuning
loops, we calculated solutions of Eq. 1 — 3 for Xc(p),
Xs(p), ωa and ωs.

The generator power (Pg) and the extracted power from
the c-cavity (Pc) are shown in Figures 3 to 5, corresponding
to the tuning method of 1 to 3, respectively. Figure 3 shows
the case of method 1. The increase of Pg and Pc from their
minimum values is very small, even if φsg has an error of±
10 degrees. Similar result was obtained also when φac has
the same amount of error. This phase accuracy can be eas-
ily achieved with an ordinary phase-detection system. This
method can be used for the ARES.

Figure 4 shows the case of method 2. A phase error of
± 1.0 degree in φsg gives rise to an unacceptable increase
of Pg and Pc. The extreme sensitivity to the phase error can
be understood by considering the fact that the relative phase



between the a- and s-cavity is insensitive to the frequency
change (see Figure 2). Consequently, a small phase error
significantly shifts ωs or ωa. Therefore, this tuning method
should not be adopted.

Figure 5 shows the case of method 3. When ωs shifts
from ωrf by ± 10 kHz, Pc increases significantly. In or-
der to avoid any extraordinary heating of the load terminat-
ing the damper, ωs should be controlled to within± 10 kHz,
which corresponds to a temperature change of± 2 degrees.
It is almost impossible to control ωs with this accuracy: a
large amount of heat flows from the cavity wall to the water
cooling channel and a large temperature gradient exsits in
the cavity.
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Figure 3: Effect of the error in φsg for tuning method 1.
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Figure 4: Effect of the error in φsg for tuning method 2.
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Figure 5: Effect of the error in ωs for tuning method 3.

4 BUNCH-GAP TRANSIENT

The transient responses can generally be calculated from in-
verse Laplace transforms of Eqs. 4 — 6. Here, we calcu-

late the bunch-gap transient. We assume that inNb equally-
spaced buckets M continuous buckets are filled with an
equal charge (q) and the otherNb−M bunches are missing.

To simplify the problem, we assume that the tuners and
the feedback loops do not respond to the bunch gap. This is
valid for KEKB: the response speed for the tuning control
is 1–10 Hz and that for the ALC and PLL is about 1 kHz,
whereas the revolution frequency is 100 kHz. We also ne-
glect the effect of the bunch-position shift due to field mod-
ulation on the beam-induced voltage. Instead, we simply
use equi-distant bunches with gaps and the Laplace trans-
forms. This approximation is good for KEKB, since the
bunch-position shift is small.

We calculated the gap transient in the following way.
First, we calculate the operating parameters, such as ωa, ωs,
and ig , under a continuous beam loading of KEKB. Then,
a beam spectrum with a 10% gap is applied to the system,
while keeping ωa, ωs, and ig constant.

Figure 6 shows the results. The modulation of the ampli-
tude (∆V/V ) and the phase (∆φ) of the a-cavity are 0.8%
and 2.6 degrees, respectively. The effective change of the
bunch phase (∆φb), which is given by ∆φb = ∆φ +
(∆V/V ) tanφs, is 2.7 degrees, whereφs is the synchronous
phase. The modulation of the a-cavity field is in good agree-
ment with that calculated using a single-cavity approxima-
tion [3]. The extracted power Pc changes from 300 W with
the beam to a peak of 2.5 kW at the gap. The response is
fast because of the lowQ-value of the c-cavity.

Figure 6: Transient response to a bunch gap in KEKB.

5 SUMMARY

We have studied the tuning control system and the bunch-
gap transient on the basis of the transfer functions. We pro-
posed the most promising tuning method for normal operat-
ing conditions with the ALC and PLL working. A remain-
ing problem is to establish a recovery procedure: when we
switch on the ARES under a circulating beam, we have to
tune the cavities before the ALC and PLL are switched on
under heavy beam loading. Further study in this respect is
being conducted.
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