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1   INTRODUCTION

In the papers [1-3], we derived precise equations,
describing the rf-coupling of two cavities through a
centerhole of arbitrary dimensions. On the base of these
equations we numerically calculated the relationship of
coupling coefficients versus different parameters
(frequency, hole radius, etc.). This paper presents
analytical solutions of these equations for various limited
cases. In particular, it is explicitly shown that in the case
of small holes a → 0 the formulated equations agree
with those derived in the papers [4-6] on the base of
quasi-static approach. Besides, expressions are derived
for coupling coefficients which are valid up to the second
order in the relation of the hole dimension (a) with the
free-space wavelength (λ). For derivation of these
expressions we have used the method of solving of an
infinite set of linear algebraic equations, based on its
transformation into dual integral equations.

2 PROBLEM DEFINITION. ORIGINAL
EQUATIONS

Let us consider the coupling of two cavities through a
circular hole with the radius a in a separating wall that
has the thickness t. For simplicity's sake, we will
consider the case of two identical cavities, with b -being
the cavity radii and d - their length. In the papers  [1-3] it
was demonstrated that if the field is expanded with the
short-circuit resonant cavity modes and E010-modes are
selected as fundamental, the precise set of equations will
consist of two equations for the amplitudes of E010 -
modes, where coupling coefficients are defined by the
way of solution of an infinite set of linear algebraic
equations. Let us generalize the case considered in  [1-3],
choosing as fundamental E pq0 -modes of closed cavities

(q is the number of field variations across the radius, p is
the number of field variations along the longitudinal
coordinates). Using the method, similar to the one in [1-
3], one can show that the set of equations, describing the
system under consideration, has the form:
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( )  is the amplitude of E qp0 -mode in the i-th cavity

(i=1,2). The normalized coupling coefficients  Λ i  are
determined by the expression:
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where ws
i( )  are the solution of the following set of linear

equations:
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The coefficients ws
i( )  have a simple physical sense.

Really, it is easy to show that the tangential electric field
component in the left cross-section of the coupling hole
E rr

( ) ( )−  has the form:
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( )E q p0
1  is the value

of the longitudinal (perpendicular to the hole) electric



field of (0, q, p)-mode in the first cavity on the left

coupling hole cross-section at  r = a, while  
~

, ,
( )E q p0
2  is the

same value for the right-hand cavity on the right
coupling hole cross-section at  the same radius.  From the
expression (4) it follows that the tangential electric field
component on the left coupling hole cross-section1   is
equal to the difference of two induced fields, each of
which is proportional to the perpendicular electric field
components of E q p0, , -modes, taken to be fundamental.

There, the coefficients ws
i( )  are the ones of expansion of

the appropriate functions with the complete set of

functions { }J r as1( / )λ . Thus, the two-cavity coupling

problem, rigorously formulated on the base of the
electric field expansion with the short-circuit resonant
cavity mode, is reduced to the induced field definition on
the right and left cylindrical hole cross-section..

3 INFINITELY THIN WALL CASE

An important role in the problem of cavity coupling
plays the case of infinitely thin wall, dividing the cavities
(t = 0). In this case, from  Eqs.(3) it follows that
w w wm m m

( ) ( )1 2= = . In this case the set of equations for wm

will take on the form2 :
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3.1   Small coupling hole case (a → 0)

If in Eqs.(5,6) the hole radius tends to zero3 , then
Eq.(5) will become:
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In order to get the solution for Eq.(7) we will introduce
an integer odd function f z1( )  the values of which in the

points z s= λ  are equal ( ) ( )f w Js s s1 1λ λ= . Let us

assume that at ( )z f z→ ∞ 1  grows not faster than

exp(z), then, in accordance with Cauchy theorem, the

function  ( )( )f z J z( ) / 0  can be expanded into the series

over mere fractions

                                           
1 The same is true for the right cross section
2 We have neglected terms of order a 5  in the expression
for Gm s,
3 In this case, as follows from Eqs.(1), the coupling

coefficients will be proportional to a3
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Using (8), and, also, multiplying Eq.(7) by

( ) ( )J x Jm m1 1λ λ/ , where 0< x <1, and doing summation

over sub-index m, we will get
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By multiplying (8) by ( )z J x z1  and integrating over z

from 0 to ∞, we will obtain at x >1:
( ) ( ) ( )z f z J x z dz x1 10 0 1 10=∫ >∞ , .

In this way, the set of linear algebraic equations  (7)
with a complicated coefficients matrix that cannot be
expressed via elementary functions and can be calculated
only numerically, has been reduced to two integral
equations (9,10). Having determined the kind of function

( )f z1 , there is no need in calculating the sum (6), since
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The method of solving the dual integral equations of
the type (9,10) on the base of the Mellin transformation,
as well as the property of Cauchy-type integrals, can be
found in [7]. The brief summery of their solutions is
given in [8]. We shall dwell briefly  on a simpler method
of resolving this system.

Since ( )f z1  is the odd function it can be represented

in the form ( ) ( ) ( )f z zt t dt1 0= ∫ ∞sin .η  Substituting this

expression in Eq.(10) we obtain such integral equation

for ( )η t : ( )dt t t x xx η / , .2 2 0 1− = >∫ ∞  The solution of
this equation is ( )η t = 0 for t >1. Consequently, any
function of the type

( ) ( ) ( ) ( )f z z t t dt1 0
1 12= ∫ sin η

satisfies Eq.(10). Substituting (12) into (9), we obtain the
first kind Volterra equation Abelian type
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the solution for which can be found in the analytical
form. Omitting the intermediate formulae, we shall give
the final expression for the function ( )f z1 :

( )f z j z1 16= ( ) , where j zn ( )  is the spherical Bessel

function of order n.
The normalized coupling coefficients, as follows from

(11), is equal to Λ =1. Since ( ) ( )w f Js s s= 1 1λ λ/ , then,

from (4), we will obtain
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Thus, on the base of a rigorous electrodynamic

description of the two cavity coupling system we are the
first to prove, by the way of the limit transition a → 0,
the correctness of the equations formulated in the papers
[4-6] on the basis of the quasi-static approximation, and



to obtain the expression for the tangential electric field
on the hole.

3.2   The case of small, though finite, values of
coupling hole radius

The above method presents the opportunity to obtain
analytical expressions for the normalized coupling

coefficients with an accuracy on the order of ( / )a λ 2 . If
a / λ  is small, though finite, then, the coefficients ws  in

(5) will be dependent on the hole radius value a:
w w as s= ( ). Let's introduce the function of two

variables: ( )ψ λ( , ) ( ) ( ) / .a z z J z w a zn n
n

= −∑
=

∞
2 0

2 2

1
 We

will assume that relative to the variable z the function
ψ( , )a z  will obey the conditions formulated in
Subsec.3.1. Using the technique, similar to that described
in Subsec.3.1, the set (5) can be reduced to:
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Letting a → 0 in Eqs.(14,15), we derive a set of
equations (9,10), and, consequently, ψ( , ) ( )0 1z f z= .

Let's represent ψ( , )a z  in the form

ψ ψ ϕ( , ) ( , ) ( , )a z z a a z= +0 2 . From (14,15) it follows that

ϕ( , )0 z  satisfies the following equations:
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The solution of Eqs.(16,17) has the form
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The normalized coupling coefficients Λ,  accurate to the

order ( / )a λ 2 , is determined by the relationship:
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For the case ω ω≈ q p,   the expression (19) agrees with

that for the generalized polarizability, obtained in [9] at
b → ∞  via the variation technique. Note that the
expression (19) is true for the frequency ω  that is not
close to the resonant frequencies of the non-fundamental
modes of closed cavities: ω ω≠ n m,  if ( , ) ( , )m n q p≠ .

Knowing ψ( , )a z , and, consequently, w as( ), the form of

the tangential electric field around the hole can be
reconstructed:
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4   CONCLUSION

On the base of our method of reduction of the infinite
linear algebraic equation set to dual integral equations,
we obtained, in different limited cases, the rigorous
analytical solutions regarding the two-cavity coupling
problem. Alongside with general theory significance, the
obtained solutions are of applied interest, since they can
be used for a better convergence of the original equation
solution (3), which are true for arbitrary dimensions of
the coupling hole.
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