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1   INTRODUCTION

The chain of coupled cavities are widely used in the
RF-engineering. Slow wave structures on their base are
most common in the accelerator technology, finding
various applications as well in RF-devices designed to
generate and amplify electromagnetic waves (see, for
example, [1,3]). Since resonant properties of each  cavity
can be described by equations that resemble in their
outward appearance the classic equations of the resonant
circuits, then, a coupled cavity chain should be described
similarly. Such an approach to the study of properties of
coupled cavity chain (a method of equivalent circuits) is
very useful to model rf cavities. Its advantage over
purely electrodynamic methods is in its explicitness and
a relative simplicity of the mathematical analysis which
is of supreme importance for the stage of primary
electrodynamic properties study and conceptual design of
the system. It is especially manifest in the development
of complex structures: a chain of cavities coupled
through slots [4], a biperodic or compensated structure
[5,6], a detuned structure [7] and others. However,
justification of such models must be made on the base of
the electrodynamic approach which simultaneously gives
their accuracy.  The main question in utilization of the
circuit model for description of a coupled cavity chain is
the possibility of truncation the number of circuits under
consideration and their connections, since a precise
account of all these factors would do more than simply
eliminate the advantages of this approach: it would make
this problem mathematically unresolvable.  By doing
such truncation we have to take into account the
following circumstance. Since commonly the analysis of
characteristics has to be made within a confined
frequency range, then the total initial set of circuits can
be broken down into two classes: the resonant one,
representing modes with eigen-frequencies which values
are close to the frequency range under the consideration,
and the non-resonant one. If the couplings of the resonant
circuits form the main frequency properties of the
system, then the presence of the non-resonant circuits
form the properties of such couplings. Although the
amplitude of each non-resonant mode is small , their
total effect on resonant circuit couplings is considerable.
Based on the rigorous electrodynamic approach, in two
cavity coupling problem we could separate the above
circuit types and also bring down the study of influence
of the non-resonant modes to the field coupling on the
boundaries dividing the cavities [9,11]. This approach
allowed to preserve the explicitness of the model as a

system of coupled resonant circuits and calculate
accurately the necessary coupling coefficients.  In this
work this method is used to describe an infinitely long
chain of cylindrical cavities coupled through central
holes in sidewalls. The focus of attention is paid to the
calculation of the value of coupling of cavities which
have no immediate contact. The number of couplings to
be taken into account determines not only the slow-wave
structure properties, but also a possibility of their
matching and tuning. The latter is of added importance
for development of inhomogeneous structures. As
distinct from the previous papers [3,5,6,12], we have
managed to elaborate on a model, allowing consecutively
to take into consideration any number of couplings.

2   BASIC EQUATIONS

Let us consider an infinite chain of similar ideally
conducting co-axial cylindrical cavities (disk-loaded
wavequide) coupled through cylindrical holes with the
radius a in the dividing walls of the thickness t. The radii
and lengths of the cavities we denote by b and d. The
disks of the i-th cavity we denote by the indexes i and (i-
1). In order to construct a mathematical system model
under consideration we will use a method of partial
cross-over regions [13]. Using the method, similar to the
one in [1-3], one can show that the set of equations,
describing the system under consideration, has the form:
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In Eqs.(3.2) k =2,3...∞. The closed set of equations (1-3)
describes rigorously the electrodynamic system under
consideration. Eqs.(1) describe the coupling of the
infinite chain of the resonant circuits, with the coupling
coefficients  Λ ±,k  being frequency functions.

From Eq.(1)  one can deduce that the electric field
tangential components in the circular regions, through
which i-th cavity is connected with others elements of
the system under consideration , are only determined  via
the fundamental mode E0 1 0, ,  amplitudes of all cavities.

The coefficients w s
i

±,
( )  are proportional to the expansion

coefficients of tangential electric field with the complete

set of functions { }J r as1( / )λ  on the right and the left

hole cross-sections of the i-th disk.
Thus, the problem of coupled cavities has been

rigorously reduced to the problem of the coupling of
electric fields (see, Eqs.(3)), which are determined in
circular regions r ≤ a.

3   RESULTS OF THE ANALYSIS AND
NUMERICAL SIMULATION

The coupling of fields on various disks are described

in Eqs.(3) by the terms which contain factors Gn s
i

,
( , )2 . This

is confirmed  by the fact that at a→0 and t =0

Gn s
i

,
( , )2 0→ , while Gn s

i
,

( , )1  tend to constant values,

independent of a. In this case Eqs.(3) have the following
solution
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at which Λ Λ− += =, ,1 1 1 and all the remaining values of

the normalized coupling coefficients are equal to zero. At
these conditions the set (1) coincides with the equations
describing an infinite cavity chain obtained in the quasi-
static approximations [14-16]. Eqs.(1) have the solution

of the kind a a i nn
0 1 0,
( ) exp( )= φ , where a0  is the constant,

while φ  is determined from the following equation:
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From Eq.(4) it follows that in the general case  in
order to determine the phase shift between cavities it is
necessary that couplings of all disks be taken into
account. However, as numerical simulations indicate, the
contribution of "long range" couplings is small and one
can confine oneself to considering field couplings on the
finite number of disks. There, since we had used some
symmetry relationships, it is necessary to observe the
strict correlation between the number of terms in the sum
over  k in Eq.(4) and the number of equations taken into
account in Eqs.(3).  Results of numerical analysis of
Eq.(4}) are presented below. Tab.1 gives the calculated
values1  of phase shift (in degrees) per cell for the cavity
chains with such geometrical dimensions that ensure
phase shifts to occur close to φ =2π /3, π /2,  and  π /3.
The operation frequency is f0=2797.0 MHz (λ0=
10.7183 cm). We have: the results in column (1)
correspond to the case of non-coupling disks,  (2) - two
disks, (4) - four, (6) -  six, (8) - eight disks are coupled.

From Tab.(1) it follows that the influence of coupling
of different disk fields on the buildup of a certain phase
shift depends both on the spacing of the disks and on the
hole dimensions.

Table 1.
Calculated values of the phase shift (in degrees)  per

one cavity for various cavity chains
a /λ 0 (1) (2) (4) (6) (8)

D = λ 0/3

0.08 120.163 120.025120.012 120.012 120.012
0.14 120.583 120.071120.012 120.013 120.013

D = λ 0/4

0.08 88.698 90.183 90.010 90.012 90.012
0.11 88.427 90.458 89.978 89.986 89.986
0.14 88.393 90.919 89.993 90.017 90.018

D = λ 0/6

0.08 54.873 61.994 60.059 60.065 60.065
0.11 55.855 63.810 60.084 60.078 60.083
0.14 57.458 65.776 60.161 60.081 60.100
Thus, for instance, in the case of disk-loaded

structures operating in the  φ = π/3 mode, even at small
values of the hole radius, it is necessary to take into
account field coupling of four disks, while at large one -
six disks. In the case of disk-loaded structures operating
in the φ = π/2 mode it is necessary to take into account
field coupling of four disks. In the case of the most
commonly used disk-loaded structures operating in the
φ = 2π/3 mode only coupling of fields of two disks
should be taken into account for a broad range of hole

                                           
1 Our results are in good agreement both with the
experimental data, given in [3], and with the calculation
results performed within the program developed on the
base of partial region technique [17].



radii. The dependence of corresponding coefficients on
frequency, in general, seriously influences on the
electrodynamic characteristics of the system under
consideration. Tab.2 presents calculation results of the
relationship of phase shift  per cavity versus frequency
(dispersion relation) for a homogeneous disk-loaded
waveguide with D = λ 0 3/  and a / .λ 0 014= .

The column (A)
corresponds to the case

( )ρ ρ ωi i= , column (B) -
ρ ρ ωi i= ( )010 , column
(C)-ρ ρi i= ( )0 (quasistatic
case). From the
calculations it follows that
ρi  vs. ω relationship, even
within the passband,
exercises an influence
upon phase shift.

From the results above,
one can deduce that cavity
chains of any geometry
(homogeneous and

inhomogeneous) with D ≥ λ 0/3 and a/λ 0  ≤ 0.14 can be

described very accurately by the coupled circuit model,
wherein each resonant circuit is coupled to two
neighboring ones:
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where the coefficients Γ Γ( ) ( ),i i
±  for i-th cavity will be

determined by two values of the radii of coupling holes,
through which this cavity is connected with adjacent
ones, geometrical dimensions of the (i-1, i, i+1)-th
cavities and frequency. The results of studies of
inhomogeneous cavity chains on the base of Eq.(5) will
be presented in a future paper.

4   CONCLUSION

In this paper on the base of a rigorous electrodynamic
approach we have developed a mathematical model of a
cylindrical cavity chain with electric coupling. This
model combines the model of the equivalent coupled
circuit chain and an accurate description of the non-
resonant field influence. The above approach can be also
used in the case of magnetic coupling. In this case the
problem of accurate description of the potential fields on
the holes and slots (see, for example, [18]) will be easier,
because within the frame of the partial cross-over regions
method the subset of irrotational modes is a part of the
complete set of modes that one has to use to expand
fields with. This technique is easily transformed for the
case of inhomogeneous structures. Then, there is a

possibility to control rigorously the effects of "long-
range" coupling of cavities.

To this day, the equivalent circuit model was an only
approximate one at large couplings. In this case, one had
to determine the circuit chain parameters from the
measured dispersion curves of the passbands. The above
method imbues one with hope that this model can give
sufficiently accurate description of the characteristics of
the coupled cavity chain at large couplings.
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Table 2
Phase shift (in degrees)  vs

frequency
f, GHz A B C

2.727 25.15 25.23 27.59
2.737 45.12 45.24 48.19
2.747 59.63 59.80 63.50
2.757 72.20 72.48 77.01
2.767 84.01 84.35 89.84
2.777 95.57 96.03 102.72
2.787 107.39108.01116.35
2.797 120.07120.93131.94
2.807 134.73136.02153.34
2.877 155.07157.81 -


