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Abstract

We propose a specification for a two-stage collimation in-
sertion. We compute exact correlated phase advances be-
tween primary and secondary collimators , and determine
the number of jaws needed to reach an almost ultimate per-
formance.

1 INTRODUCTION

An exact treatment of a two-stage collimation system con-
sidered as an optical device, i.e disregarding true scattering
in collimator jaws, exist for the one-dimensional case and
in the special 2D-case of an optics with equal phase ad-
vance in the two transverse dimensions [1]. The problem
of a 2D-system with an arbitrary optics was solved with nu-
merical methods in conjunction with the approximate con-
cept of phase modulation with some success [1][2][3], but
without cutting the amplitude of the secondary halo down
to the ultimate limit of the aperture of the secondary colli-
mators. In this paper, we propose an exact solution of the
phase advances between collimators approaching the ulti-
mate limit.

2 DEFINITION AND NOTATIONS

We use horizontal and vertical betatron coordinates as well
as horizontal dispersion normalised with the transforma-
tionsX = Nxx,Y =Nyy andχ = NxD with
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)
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1 0
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)(
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)
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In normalised coordinates, noted by 4-vectorsAi =
(X,X ′, Y, Y ′) the betatronic transfer matrixMij between
two locations is made of two clockwise rotations, one for
each proper plane, where the angles of rotationµx andµy
are the betatronic phase advances, i.e.

Mij =



cosµx sinµx 0 0
− sinµx cosµx 0 0
0 0 cosµy sinµy
0 0 − sinµy cosµy


 . (2)

The normalised invariant amplitudes areAx = (X2 +
X ′
2)1/2,Ay = (Y 2 + Y ′

2)1/2 andA = (A2x +A
2
y)
1/2.

3 BETATRON COLLIMATION

We first consider circular collimators in normalised coor-
dinates. The normalised aperture of the primary and sec-
ondary collimators aren1 andn2. These numbers are fixed

in our problem, in the sense that they cannot be varied to
optimise a collimation system but must rather fit to exter-
nal parameters like the dynamic aperture or the effective
geometrical aperture of the ring. We use the approxima-
tion of slow diffusion of the primary halo, meaning that the
impact parameter at the primary collimator is small com-
pared ton1, or that the impact points are at the surface of
the collimator and also that both betatronic oscillations are
at their maxima, i.e.X ′o = Y

′
o = 0. Finally we will min-

imise the extension of the secondary halo after it is cut by
the secondary collimators treated as black absorbers. pri-
mary collimator areAo = (n1 cosα, 0, n1 sinα, 0). The
scattering process adds an arbitrary value toX ′o andY ′o ,
following here for simplicity an isotropic distribution. The
coordinates at the primary collimator after scattering are

A1 = (n1 cosα,K cosφ, n1 sinα,K sinφ), (3)

with theX−Y azimuthα and the polar variablesK andφ
in theX ′o − Y

′
o plane.

3.1 Phase advances

For arbitraryα andφ, we transport the particle with (2) and
(3) to a location of yet unspecified phase advancesµx and
µy where a secondary collimator is located and get

A2 =



n1 cosα cosµx +K cosφ sinµx
−n1 cosα sinµx +K cosφ cosµx
n1 sinα cosµy +K sinφ sinµy
−n1 sinα sinµy +K sinφ cosµx


 . (4)

The efficiency of the secondary collimator is measured by
the smallest amplitudeAcut that it can intercept.Acut is
minimised ifX2 andY2 are maximised. Using the invari-
ance ofAx,2 andAy,2, this condition is equivalent to asking
forX ′2 = Y

′
2 = 0. With these conditions in (4) we get

tanµx =
K cosφ

n1 cosα
, tanµy =

K sinφ

n1 sinα
. (5)

These conditions allow to compute the sole free parameters
µx = µx(α, φ,K) andµy = µy(α, φ,K). Whileα andφ
are free variables,K is restricted to its maximum allowed
value corresponding to the smallest possibleA2 = Acut =
n2 (see Figure 1). This is obtained by using (5) in (4) with
againX ′2 = Y

′
2 = 0. We get

K = Kc =
√
n22 − n

2
1, (6)

which is independent of bothα andφ. Writing tanµo =
Kc/n1 = (n

2
2 − n

2
1)
1/2/n1, (5) is now

tanµx = tanµo
cosφ

cosα
, tanµy = tanµo

sinφ

sinα
. (7)
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Figure 1:The line of the scattered particles at the primary colli-
mator parametrised with (n1, α,K, φ) transforms at the location
of a secondary collimator to another line which crosses the circle
of radiusn2 whenK = Kc whatever (α, φ). A flat jaw at azimuth
αjaw is sufficient to cut at amplitudeA = n2, see text.

These formulae indicate that an optimum collimation for
all possibleα andφ would need an infinity of collimators,
with an optics able to offer an infinity of pairs of phase
advances (µx, µy).

Before compromising on the number of collimators, it
must be noticed that for given (α,φ), the secondary colli-
mator at (µx, µy) needs not be circular. A single flat jaw
at theX − Y azimuthαjaw = tan−1(X2/Y2) is sufficient
(see Figure 1). With (4), the azimuth of the jaw must be

tanαjaw =
sinα cosµy + tanµo sinφ sinµy
cosα cosµx + tanµo cosφ sinµx

. (8)

3.2 A finite number of collimators

To limit the number of collimators, we consider a system
made of three primary collimators which delimit an octag-
onal primary aperture. Further we consider the scattered
particles to be issued from the central point of each jaw, i.e.
at azimuthα = 0, π/4, π/2 (Figure 2). Then we compute
the phase advances between a primary and the secondary
collimators associated to the four scattering azimuthsφ =
α, α+π andφ = α±π/2, called respectively plane (‖) and
orthogonal (⊥) scattering . For‖-scattering with (7) we get
µx = µy = ±µo + kπ which is the old result found for
1D-collimation [1], and with (8) we getαjaw = α + kπ.
For ⊥-scattering , we getµx = ± tan−1(tanµo tanα),
µy = ± tan−1(tanµo/ tanα). The resulting phases in Ta-
ble 1 are the smallest ones. One can addπ to any of these
phases but thenαjaw must be reevaluated.

3.3 Simulation for realistic primary halo

To check the relevance of the 3-point approximation, we
wrote a simple simulation program. Primary impacts are
uniform along the inner surface of the jaws. Scattering an-
gles are uniform in theK − φ plane. The tracking is made
with transfer matrices like (2) in which (µy, µx) are taken
from Table 1. At each collimator it is verified if the par-
ticle touches a jaw. The particles surviving all secondary
collimators are added to aAx−Ay plot and to a combined
amplitude distributiondN/dA (Figure 2). The octagonal

Table 1:Secondary collimator locations and jaw orientations for
three scattering centers (α)and for parallel and orthogonal scatter-
ing.

α φ µx µy αjaw

0 0 µo - 0
0 π π − µo - 0
0 π/2 π 3π/2 -µo
0 −π/2 π 3π/2 µo
π/4 π/4 µo µo π/4
π/4 5π/4 π − µo π − µo π/4
π/4 3π/4 π − µo π + µo π/4
π/4 −π/4 π + µo π − µo π/4
π/2 π/2 - µo π/2
π/2 −π/2 - π − µo π/2
π/2 π π/2 π π/2− µo
π/2 0 π/2 π π/2 + µo

6 7 80 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0

0.5

1

Figure 2:Left: the axis are eitherX andY orAx andAy. The
circles indicate the sourcepoints used to compute the collimator
location given in Table 1. The contour plot is the density of the
secondary halod2N/dAxdAy obtained with the numeric simu-
lation described in Section 3.3. Right: the amplitude distribution
dN/dA integrated fromd2N/dAxdAy. Full line, the 12-jaw case
and dotted line, the 24-jaw case. We usedn1 = 6 andn2 = 7.

primary aperture and the flat secondary collimators gener-
ate an octagonal footprint inAx − Ay , with largest sec-
ondary amplitudeA = n2 cos(π/8) = 1.08n2, whereas
circular collimators would sharply cut atA = n2. This fact
taken into account, the 3-point approximation is very good,
the count rate being small aboveA = 1.08n2. A 24-jaw
solution is explored with in addition to‖ − and⊥ − scat-
tering the scattering anglesφ = 45o + kπ/2. The result is
closer to the ultimate limit (see Figure (2)) but certainly not
worth the additional hardware investment.

We therefore need four secondary collimators for each of
the primary azimuths, i.e. twelve with three primary colli-
mators. This result was already obtained by D. Kaltchev
[3] with numerical methods.
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4 EXISTING SOLUTIONS

With a symmetric optics (µx(s) = µy(s)) the secondary
halo is cut atAsec = 1.32n2 [1] with a ration2/n1 = 7/6.
The present best performance obtained with a modulated
optics for the LHC collimation insertion isAsec = 1.21n2
[3]. It was emphasized in former studies [1][2][3] that to
cut on large amplitudes associated to⊥-scattering large
phase modulation, i.e. largeµy − µx, was needed along
the cleaning insertion. This argument was right but incom-
plete. Strict correlation of the phase advancesµx andµy is
mandatory and the maximum modulationµy − µx = π/2
is needed for some jaws (see Table 1). While it may be
unfair to compare the performance of existing optics to our
nearly ultimate limitAsec = 1.08n2 obtained with a yet
virtual optics, a potential gain exists and we explain what
is lacking to the existing insertions.

5 MOMENTUM COLLIMATION

We restrict our discussion to a momentum cleaning inser-
tion installed in a straight section, where the dispersion
function is a betatronic trajectory. In that case, the con-
ditionD′/D = −αx/βx, or equivalentlyχ′ = 0 (see (1)),
must be satisfied at the primary collimator [1][4] to ensure
that the cut made on the secondary halo does not depend on
the momentum offsetδp. It also strictly reduces the treat-
ment of the momentum collimation to the betatronic case
in a straight section[1], while outside the straight section
xβ andxδp must of course be distinguished.

Contrary to the betatron halo which may drift away from
the beam in all transverse directions, momentum losses are
concentrated in the horizontal plane. The most demanding
case occurs at ramping when off-bucket protons are lost.
Most of these protons keep their initial betatronic ampli-
tude at injection and are therefore confined inAx,y ≈ 2. It
is therefore enough to use a single horizontal primary colli-
mator, to which four secondary collimators must be associ-
ated. Their relative locations correspond to the caseα = 0
of Table 1 and they limit the components of the betatron
vector after scattering toA1 = (n1,Kc,≈ 2,Kc).

In the arc of a ring, the aperture limitation for a particle
with momentum offset is located near horizontally focusing
quadrupoles where bothβx andDx are at their maximum.
With alsoβy small, it is thus adequate to fit the largest hori-
zontal excursionsAx,β of the secondary halo with the aper-
tureNarc = Nx,arc at that location. The straight sections
of a ring need not be considered for momentum collimation
since the dispersion is usually supressed in these areas. dis-
tanceNarc.

5.1 Amplitude cut with momentum offset

In the general case, a particle reaches the primary colli-
mator with a mixing of betatron amplitude and momentum
offset. With the dispersionχ1 at the primary collimator,
and using the approximation of slow diffusion we write

n1 = χ1δp +Xβ = χ1δp +Ax,β (9)
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Figure 3: The maximum excursionXmax of a particle as a
function of the relative momentum offsetδp (abscissa) and of
the primary collimator aperturen1 (index in the right upper cor-
ner of the figure). Each curve is ended atδp = δc(n1) where
Xmax = Narc = 11.8, a case study for LHC.

and define the largest momentum offset which can pass the
primary collimator asδc = n1/χ1 with Ax,β = 0. After
scattering and the cut of the amplitude by the secondary
collimators , the maximum horizontal betatronic amplitude
isAx,β = [(n1 − χ1δp)2 +K2c ]

1/2. ExpandingAx,β with
(6), the maximum horizontal excursion in the arc is

Xmax(n1, χ1, δ) = χarcδ + (χ
2
1δ
2 − 2n1χ1δ + n

2
2)
1/2

(10)
and is plotted in Figure 3. The largest allowed excur-
sionXmax(n1, χ1, δc) = Narc fixes δc(n1) = n1/χ1 =
[Narc−(n22−n

2
1)
1/2]/χarc. Would largen1 values be con-

sidered, the largeXmax excursion at smallδ values would
be cut at the betatron cleaning insertion. The system is
completely fixed by chosingn1 and computing

χ1(n1) =
n1

δc
=

n1χarc

Narc − (n22 − n
2
1)
1/2
. (11)

As for the choice ofn1, a lower limit is fixed by the accept-
able effective cut of the horizontal betatronic amplitude at
the edge of the bucketnedge = n1(1 − δb/δc) with δb the
bucket width.

6 CONCLUSIONS

By using correlated phase advances between primary and
secondary collimators in bothx and y planes simultane-
ously, the amplitude of the secondary halo of a two-stage
collimation system can be cut down to the aperture of the
secondary collimators. The remaining difficult problem is
to find an optic satisfying these correlated constraints.
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