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Abstract in our problem, in the sense that they cannot be varied to

N ... optimise a collimation system but must rather fit to exter-
We propose a specification for a two-stage collimation in- . : .
al parameters like the dynamic aperture or the effective

sertion. We compute exact correlated phase advances B%'ometrical aperture of the rina. We use the aporoxima-
tween primary and secondary collimators , and determirﬁa APET! ng. app
. . 1on of slow diffusion of the primary halo, meaning that the
the number of jaws needed to reach an almost ultimate per- . . .
f impact parameter at the primary collimator is small com-
ormance. . .
pared ton;, or that the impact points are at the surface of
the collimator and also that both betatronic oscillations are

1 INTRODUCTION at their maxima, i.e X! = Y, = 0. Finally we will min-

An exact treatment of a two-stage collimation system cofMise the extension of the secondary halo after it is cut by
sidered as an optical device, i.e disregarding true scatteriffgff Secondary collimators treated as black absorbers. pri-
in collimator jaws, exist for the one-dimensional case anfiay collimator areA, = (n; cosa, 0,71 sin, 0). Th,e

in the special 2D-case of an optics with equal phase agcattering process adds an arbitrary valuetfpand Yy,
vance in the two transverse dimensions [1]. The probmﬁqllow_mg here for 3|mpI|C|ty an_lsotroplc d|str|but|qn. The
of a 2D-system with an arbitrary optics was solved with nu(_:oordmates at the primary collimator after scattering are
merical methods in conjunction with the approximate con- A1 = (ny cosa, K cos ¢, ny sina, K sing),  (3)
cept of phase modulation with some success [1][2][3], but

without cutting the amplitude of the secondary halo dowiith the X —Y" azimutho and the polar variables” and¢

to the ultimate limit of the aperture of the secondary colliin the X; — Y7 plane.

mators. In this paper, we propose an exact solution of the

phase advances between collimators approaching the ui-1  Phase advances

mate limit. For arbitrarye andg, we transport the particle with (2) and
(3) to a location of yet unspecified phase advanceand
2 DEFINITION AND NOTATIONS 11, Where a secondary collimator is located and get
We use horizontal and vertical betatron coordinates as well N1 COS L COS fi + K cos ¢sin puy
as horizontal dispersion normalised with the transforma- —n1 cos asin pu, + K €oS ¢ cos iy
tionsX = Nyx, Y = N,y andy = NyD with Az = nysinacos p, + Ksingsinp, |- @
—ny sinasin pyy + K sin ¢ cos jig
X 1 1 0
( X! ) = o ( aw B ) ( ' ) : 1) The efficiency of the secondary collimator is measured by
the smallest amplitudd..,; that it can intercept.A.,; is
In normalised coordinates, noted by 4-vectoks = minimised if X, andY> are maximised. Using the invari-

(X, X',Y,Y") the betatronic transfer matrd;; between ance ofA, » andA, », this condition is equivalent to asking
two locations is made of two clockwise rotations, one fofor X; = Y, = 0. With these conditions in (4) we get

each proper plane, where the angles of rotatigrand ., K cos ¢ K sin ¢
are the betatronic phase advances, i.e. tan p, = , tanp, = —. (5)
11 COS v N1 Sin o
COS by SIN fig 0 0 These conditions allow to compute the sole free parameters
M. — —sinpiy COS iy 0 0 @) HFeo= te(a, ¢, K) andp, = py(a, ¢, K). While o and¢
Y 0 0 cospy sinpy, | are free variablesy is restricted to its maximum allowed
0 0 —sinpu, cos iy value corresponding to the smallest possibbe= A..; =

no (see Figure 1). This is obtained by using (5) in (4) with
The normalised invariant amplitudes afe = (X? + againX} = Yy = 0. We get

X')V2 A, = (Y2 +Y'?)V2 andA = (A2 + A2)1/2,
! K =K. =/n3 —n3, (6)
3 BETATRON COLLIMATION which is independent of both and¢. Writing tan p, =
We first consider circular collimators in normalised coor&c/n1 = (n3 —n$)'/2/n1, (5) is now

dinates. The normalised aperture of the primary and sec- cos é
ondary collimators are; andn,. These numbers are fixed tanu, = tan Nom , tanp, = tanp,

sin ¢

sin «

()
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Y2
K Table 1:Secondary collimator locations and jaw orientations for
c K three scattering centers)and for parallel and orthogonal scatter-
0 ing.
o ¢ Ha Ky QXjaw
Ujaw 0 0 Lo - 0
X 0 7 T — Lo - 0
ng np 72 0 /2 ™ 3r/2 -lho
0 | —7w/2 ™ 3r/2 Lo
. . . . . T/4 | m/4 Ho Ho m/4
Figure 1:The line of the scattered particles at the primary colli- o o
t trised witha(, o, &, ¢) transf t the locati /4| ST/ T = o | T = o /4
mator parametrised witm{, a, K, ¢) transforms at the location 7/a | 3n/4 || 7= o | T o /4

of a secondary collimator to another line which crosses the circle

of radiusn, whenkK = K. whatever &, ¢). A flat jaw at azimuth LA e R N R /4

Qjaw is sUfficient to cut at amplitudd = no, see text. T/2 | /2 ) Ho ™/2
w/2 | —7/2 - T — o /2
/2 T /2 ™ /2 — o

These formulae indicate that an optimum collimation for /2 0 /2 ™ /24 o

all possiblea and¢ would need an infinity of collimators,
with an optics able to offer an infinity of pairs of phase
advancesiy, fiy).

Before compromising on the number of collimators, it
must be noticed that for givenx(p), the secondary colli-
mator at ., 11,,) Needs not be circular. A single flat jaw
attheX — Y azimuthaq,, = tan™'(X2/Y>) is sufficient
(see Figure 1). With (4), the azimuth of the jaw must be

. . . - 05
sin o cos gy + tan p, sin ¢ sin pu,

®)

tan g = - .
/ COS (v COS i + tan i, cos ¢ sin ju,

3.2 A finite number of collimators

To limit the number of collimators, we consider a system
made of three primary collimators which delimit an octag-
onal primary aperture. Further we consider the scattered
particles to be issued from the central point of each jaw, i.&9ure 2:Left: the axis are eitheX andY or A, andA,. The

at azimutho: = 0, /4, /2 (Figure 2). Then we compute C|rclgs |nd|cat§ the sourcepoints used to cqmpute the .colllmator
the phase advances between a primary and the secondgpé?uon given in Table 1. The contour plot is the density of the

limat iated to the f tteri . hs secondary hal@? N/dA,dA, obtained with the numeric simu-
collimators associated to the four scattering azimgt lation described in Section 3.3. Right: the amplitude distribution

a,a+mandg = O‘i”_/Q’ called respec_tively_ plangYand dN/dA integrated fromi? N/dA,dA,. Fullline, the 12-jaw case
orthogonal () scattering . Fofi-scattering with (7) we get and dotted line, the 24-jaw case. We used= 6 andn, = 7.
te = py = Epo + k7 which is the old result found for

1D-collimation [1], and with (8) we ged .., = o + k.

For L-scattering , we get, = = tan~!(tan y, tana),

py = £ tan~!(tan p,/ tan ). The resulting phases in Ta- primary aperture and the flat secondary collimators gener-
ble 1 are the smallest ones. One can add any of these ate an octagonal footprint i, — A,, with largest sec-

phases but thef;,,, must be reevaluated. ondary amplituded = nqcos(7/8) = 1.08nq, whereas
circular collimators would sharply cut 2t = n,. This fact
3.3 Simulation for realistic primary halo taken into account, the 3-point approximation is very good,

the count rate being small above= 1.08n2. A 24-jaw
Solution is explored with in addition tp — and L — scat-
?ering the scattering angles= 45° + km/2. The result is
Woser to the ultimate limit (see Figure (2)) but certainly not
worth the additional hardware investment.

To check the relevance of the 3-point approximation, w
wrote a simple simulation program. Primary impacts ar
uniform along the inner surface of the jaws. Scattering a
gles are uniform in thél — ¢ plane. The tracking is made
with transfer matrices like (2) in whichu(, 1) are taken
from Table 1. At each collimator it is verified if the par- We therefore need four secondary collimators for each of
ticle touches a jaw. The particles surviving all secondarthe primary azimuths, i.e. twelve with three primary colli-
collimators are added to4, — A, plot and to a combined mators. This result was already obtained by D. Kaltchev
amplitude distributiondN/dA (Figure 2). The octagonal [3] with numerical methods.
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4 EXISTING SOLUTIONS

With a symmetric opticsy{,(s) = u,(s)) the secondary
halo is cut atds.. = 1.32n2 [1] with arationy/n, = 7/6.

The present best performance obtained with a modulated
optics for the LHC collimation insertion ids.. = 1.21no

[3]. It was emphasized in former studies [1][2][3] that to
cut on large amplitudes associated tescattering large
phase modulation, i.e. large, — u,, was needed along
the cleaning insertion. This argument was right but incom- s

plete. Strict correlation of the phase advangesindy,, is ’ e
mandatory and the maximum modulatiop — p, = /2

is needed for some jaws (see Table 1). While it may be

unfair to compare the performance of existing optics to odfigure 3: The maximum excursion{,m,. of a particle as a
nearly ultimate limitA,.. = 1.08n, obtained with a yet function of the relative momentum offsé} (abscissa) and of

virtual optics, a potential gain exists and we explain whaf'® Primary collimator aperturs, (index in the right upper cor-
is lacking to t,he existing insertions ner of the figure). Each curve is endeddgt = d.(n1) where
9 9 ) Xmaz = Nare = 11.8, a case study for LHC.

5 MOMENTUM COLLIMATION
) ) . __and define the largest momentum offset which can pass the

We restrict our d|scuss_|on to a momentum cIean!ng inSefrimary collimator ass, = n; /x; With A, 5 = 0. After
tion installed in a straight section, where the dispersiogcattering and the cut of the amplitude by the secondary
function is a betatronic trajectory. In that case, the cons|limators , the maximum horizontal betatronic amplitude
dition D'/D = —az /[, or equivalentlyy’ = 0 (see (1)), is A, 5 = [(n, — x16,)? + K2]V/2. Expanding4, s with
must be satisfied at the primary collimator [1][4] to ensureg) the maximum horizontal excursion in the arc is
that the cut made on the secondary halo does not depend on
the momentum offset,. It also strictly reduces the treat-  Xaz(n1, X1,6) = Xared + (X16% — 2n1X16 + n3)
ment of the momentum collimation to the betatronic case (10)
in a straight section[1], while outside the straight sectioand is plotted in Figure 3. The largest allowed excur-
zg andzs, must of course be distinguished. SION Xinaz (11, X1,0c) = Nare fiX€Sde(n1) = n1/x1 =

Contrary to the betatron halo which may drift away from Nu,.. — (13 —n?)'/2] /X are. Would largen, values be con-
the beam in all transverse directions, momentum losses aidered, the larg& ... excursion at smalf values would
concentrated in the horizontal plane. The most demandifig cut at the betatron cleaning insertion. The system is
case occurs at ramping when off-bucket protons are lostompletely fixed by chosing;, and computing
Most of these protons keep their initial betatronic ampli- n n

.. . . . 1 1Xarc

tude at injection and are therefore confinedlip, ~ 2. It xi(n1) = TN — 02 —n2)1/2’
is therefore enough to use a single horizontal primary colli- N are 2
mator, to which four secondary collimators must be assochs for the choice of.;, a lower limit is fixed by the accept-
ated. Their relative locations correspond to the ease0  able effective cut of the horizontal betatronic amplitude at
of Table 1 and they limit the components of the betatrothe edge of the bucket.q;c = n1(1 — 05/0.) with &, the
vector after scattering td; = (n1, K., ~ 2, K,.). bucket width.

In the arc of a ring, the aperture limitation for a particle
with momentum offset is located near horizontally focusing 6 CONCLUSIONS
guadrupoles where both, and D, are at their maximum. ) _
With alsog, small, it is thus adequate to fit the largest horiBY using correlated phase advances between primary and
zontal excursionsl,, s of the secondary halo with the aper-Sécondary collimators in both andy planes simultane-
ture Ny, = N, arc at that location. The straight sectionsOusly, the amplitude of the secondary halo of a two-stage
of a ring need not be considered for momentum collimatiofollimation system can be cut down to the aperture of the

since the dispersion is usually supressed in these areas. §@condary collimators. The remaining difficult problem is
tanceN,,,.. to find an optic satisfying these correlated constraints.

1/2

11)
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