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Abstract

A Hamiltonian theory, in which electromagnetic space
waves and longitudinal electric fields are incorporated byn which H is the particle energyH, the initial energy
means of their vector potentials, is used to calcula@ndE, the particle rest energg, are the components of
particle motion in linear electron accelerators. Irthe Fourier representation of the electric field, viihihe
particular these calculations have been applied to tlanplitude of this fieldk is the propagation constant in
Eindhoven 10 MeV travelling-wave linac as well as to theracuum, furthermore is the electron charge ands the
Eindhoven racetrack microtron accelerating cavity. Theell length.
calculations are in good agreement with simulations Trajectory calculations, using the transverse equations

E
h=-H/H,, e =Eg/H,, 5n:ef|nkzv (2

performed by particle-tracking codes. of motion, derived directly from [1] are not very accurate,
as a result of the linearization of the Bessel function and
1 INTRODUCTION the expansion of the square root in the Hamiltonian (eq. 6

in [1]). Without linearization and expansion, the

The orbit dynamics in an RF linear accelerator haTsollowin transverse equations of motion result, when no
been described using Hamiltonian theory [1]. The various 9 q '

focusing effects that occur in these accelerators: phass(()al“:‘nOIOIaI magnetic field is applied:
focusing in both longitudinal and transverse direction, %: 7T,
ponderomotive focusing (i.e. focusing due to higher order dz h?-e-m -1
terms in the Floquet series describing the electromagnetic ) , 3)
field) and magnetic focusing due to solenoidal fields,ﬂ: Z P ik, —k QJ\/XZTYZ)X

have been treated in one overall description. The Besseldz &, a, ton

functions in the vector potential may be expanded,

- . . ! . X . [Pm
yielding linearized equations; however, the resulting X ———=5in r z+kZB
equations of motion show small differences with yXo+ys O O

corresponding simulations using particle-tracking codes. - .
. N . nd similar equations fg,
In this paper, the Hamiltonian theory using the full . .
X . . : o In whichx andy are the transverse co-ordinates,
Bessel functions, i.e. without linearization is used to
calculate the equations of motion. The particle motionn _C 1= C T = C
obtained from this shows excellent agreement with" >~ H P Ty =Py T =

H, H,
partlcle-track|_ng s_lmulatlons. . I with ¢ the velocity of light andp, p, and p, the
In the Hamiltonian also a solenoidal magnetic field has o @ Py =7
mponents of the kinetic momentuin,the first order

. ; o C
. e ot i Besse untors, = dfine bk = ' - o,
wherek  is defined byk = k + 2rm/d, with k the phase
present paper. .
shift per cell.
In case of an applied solenoidal magnetic field, a
2 THE EQUATIONS OF MOTION transformation @, in [1]) has to be performed, which is
At the EPAC96, a Hamiltonian basis for calculation obnly possible after expansion of the square root in the
particle motion in linear accelerators has been presentedmiltonian. As mentioned, this results in rather
[1]. The scaled particle enerdy and phasek{, as a inaccurate calculations of motion in an electric field. So
function of the longitudinal co-ordinat can be derived: up to now, only the equations of motion in a solenoidal

magnetic field are used, when there is no electric field

P, (4)

© - k
@: z —Snkcong'FkZHdZ :7h+7f, (1) present:
dz & od 0 dz h2-e2 kK
) R dxz T[XZ dr[XZ 1 b2k2
with P : =2% ’ ()
dz  |h?-¢? dz h* -e2
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and similar equations fag, with new co-ordinates by Parmela and GPT, so a comparison of phases is not

X, = XCOSp + ysing, y, = ycosp — xsing, possible_. Hovx_/e\_/er, be_cause of the agree_men_t in energy

7T, =TT, cosp + 7T, Sing, TT., =TT, Cosp — TT, sing (6) calculat!ons, it is obvious that the Hamiltonian phase
x2 X y T2 y X calculations must be correct.

in which ¢ arises from the rotation due to the solenoids: ) .
3.2 Particle transverse motion

% = %hzbkz withb = eﬁliz)’ @) Second the particle transverse motion has been studied.
] : G o : o Figure 2 depicts Hamiltonian calculations using (3) and
with B(2)is the longitudinal magnetic field. Parmela and GPT simulations of particle trajectories for
10 MeV injection energy and for different injection
3 CALCULATIONS COMPARED TO phases. The left side of the figure shows those particles
SIMULATIONS injected parallelly to the-axis at a displacement of 4 mm

In this section calculations based on the Hamiltoniaffom the axis. The right side shows the particles, injected

equations of motion of the previous section are present&ithe axis with an initial divergence of 10 mrad. Again, it
and compared to results of the particle-tracking codé$ S€en that there is excellent agreement between the
Parmela [2] and General Particle Tracer (GPT) [3]. INarious computatlon_ methods. Ma_X|mun_1 differences
these codes, the same electric and magnetic fidpgtween the calculations and the simulations are about

description is specified, however these particle-tracking 2% Of the displacement from the axis at injection. At an
codes use an entirely different calculation methodli€ction phase of 9 which is about the injection phase

. ! .
Calculations of motion in an electric field have beef® P€ used, differences are about 0.5 %.. Differences

applied to the Eindhoven racetrack microtron (RTM)between calculations and simulations in the divergence
accelerating cavity, which is a standing-wave Rl?{:rg/_rg) are about 2% of the amplitude of the o_scillation
structure, calculation of motion in a solenoidal magnetill! divergence. However, the effects of these differences

field have been applied on the Eindhoven 10 MeV linedt" the electron displacement from axis are mainly
accelerator. averaged out.

5.5

3.1 Particle energy gain

—~ 454

First the particle energy and phase as a function E
position in the RTM cavity have been calculated, usir e
(1). This has been done at different injection phases ¢ |
at an injection energy of 10 MeV, which is the injectio **
energy in the RTM cavity in the first turn. In figure 1 the
energy calculation is compared to the results of Parm iy L
and GPT. The figure shows a very good agreeme o
between the different methods. Differences betwe: g
calculations and simulations are about 0.01 MeV: 1 %o =1
the injection energy. The particle phase is not provide -
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Figure 2: Electron trajectories in the RTM cavity.
Injections at different phases (indicated in the figure by
g @, at 10 MeV. Hamiltonian, GPT and Parmela
calculations are hardly distinguishable.

- 3.3 Linearity in the calculation

The displacement from axig and the divergence at
S e R the end of the cavity of a particle injected with initial
50 100 150 200 250 300 350 400 450 500 . . .

z (mm) displacemenk and divergence,’ is often calculated by
Figure 1: Energy gain of electrons in the RTM cavityusing a transport matrix:
Injection at different phaseg, at 10 MeV. Curves

presenting Hamiltonian, GPT and Parmela calculation b
are hardly distinguishable. E% = g q %SE (8)
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Using this transport matrix assumes that calculations
are linear. For standing wave cavities an analytic
approximation of the matrix is given by Rosenzweig and
Serafini [4]. The linear character of the Hamiltonian
calculations has been examined by comparing particles
that are injected close to and far from the axis and by
particles that have a small and large divergence at an
injection energy of 10 MeV. The same has been done
using the simulation codes Parmela and GPT. Figure 3
shows the transport coefficients as a functiongofit
appears that thie coefficient is linear within the accuracy
of the provided data, and that taeandd coefficient are
linear within 1.5% in the Hamiltonian calculations and
both the simulations. The coefficient is linear within
20%, so it should be used carefully. For all coefficients a
rather good agreement to the Rosenzweig and Serafini

Y
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theory is shown. From the fact that the particle transver%qgure 4: Non accelerated particle (1 MeV) trajectories in

position is determined by theeandb component, it can

the Eindhoven 10 MeV travelling wave linac solenoidal

be concluded that linear approximation of particleyagnetic field, the double line represents Hamiltonian

position is rather accurate.
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calculations, the dotted line the Parmela simulations.
a. Injection 3 mm off axis without divergence.
b. Injection from the axis with a 10 mrad divergence.

4 CONCLUDING REMARKS

Calculations performed, using Hamiltonian equations,
on the Eindhoven RTM cavity have been compared to
simulations using the particle-tracking codes Parmela and
GPT. Calculations of phase and energy as a function of
position in the cavity agree to the simulations within 1%o.
Calculations on transverse motion agree with the
simulations within 0.5%. The linear character of the
calculations has been examined: the particle position
given by linear calculations is rather accurate.
Furthermore, motion in solenoidal magnetic fields has
been calculated. The calculations agree with particle-

Figure 3: The matrix components of the transfer matrix o
the RTME cavity as a function of the injection phase,
injection at 10 MeV. Hamiltonian calculation&l (J),
Rosenzweig and Serafini theory (- - -), Parmela
simulations (....), GPT simulations({- [}). (1]

3.4 Solenoidal magnetic field calculations

To check the validity of the equations of motion in d2]
solenoidal magnetic field, Hamiltonian calculations, using
(5) are compared to Parmela calculations. The magnetig]
field used, equals the solenoidal magnetic field of the
Eindhoven 10 MeV linear accelerator [5]. The used4]
particle energy is 1 MeV and no acceleration takes place
as it would lead to inaccuracies as mentioned in section
In figure 4.a calculations are presented of a parallellé]
injected particle atx{ y) = (3 mm, 0 mm). Figure 4.b
presents a particle injected from the axis with a
divergence (x’, ¥’) = (10 mrad, 0 mrad). As seen in the
figure, agreement between both methods is perfect.

718

t]racking code simulations. Work on combining solenoidal
and accelerating field is in progress.
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