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Abstract

The new code SELF3D calculates the spontaneous
emission from electrons following trajectories in the
magnetic field of a helical wiggler using Liénard-Wiechert
(LW) fields. These fields are exact solutions of the wave
equation for a point charge. The spontaneous emission
frequency spectrum is compared with experimental
measurements at the CEA/CESTA Free Electron Laser
(FEL). In the future, SELF3D will use a self-consistent
treatment of electron beam dynamics and radiation field
evolution in the magnetic wiggler. This approach is
particularly well-suited to the investigation of self-
amplified spontaneous emission (SASE) when no seed
wave is injected at start-up.

1  INTRODUCTION
Experiments realised at Commissariat à l’Energie

Atomique / Centre d’Etude Scientifiques et Techniques
d’Aquitaine (C.E.A./C.E.S.T.A.) on bunching an intense
electron beam reported the presence of two frequencies,
one at 35 GHz and an other strong frequency at 2.95 GHz.
These FEL experiments ran in the amplifier mode with a
seed wave at 35 GHz. Measurements showed that a
spontaneously generated low-frequency mode comes to
dominate the high-frequency injected mode at long
distances and late times [1][2].This low-frequency mode
seems to be due to either spontaneous emission by the
electron beam or a transfer between 35 GHz frequency and
3 GHz frequency by co-operative effects. Our task is to
study the spontaneous emission of electron beam within
the framework of experiments at C.E.A./C.E.S.T.A.,
with the aim of understanding the 3 GHz bunching. This
approach was already tried by Tecimer and Elias [3] for
spontaneous emission of a highly relativistic electron
beam in free space. They used Liénard-Wiechert retarded
potentials and made a self-consistent algorithm to
calculate dynamics and fields. In the present paper we
propose to extend this approach, well adapted for
S.A.S.E. studies, to the case of an electron beam moving
in a cylindrical waveguide with circular cross-section. In
the second section, we present our calculation of the
retarded electric field with Dirichlet boundary conditions.
The calculation uses the dyadic Green’s function. In
section 3, the SOLITUDE[4] code and the SELF3D are
presented. In section 4, we present preliminary numerical
results obtained using the formalism developed in section
2. We calculate frequency distribution of the electric field,
on axis, at this end of the waveguide, corresponding to an

electron trajectory calculated using the code SOLITUDE
(the code SELF3D is not already self-consistent)

 2  THEORY[5][6]

2.1 dyadic green function

A dyadic Green’s function is a dyad that relates a vector
field to a vector current source. The use of dyadic Green’s
functions makes the formulation and the solutions of
some electromagnetic problems more compact; the
symbolic simplicity they offer makes their use attractive.
However, only for a few simple geometries, like the
circular cylindrical waveguide, can the dyadic Green’s
function be solved in closed form. By definition, the dyad
G is solution of the vector wave equation with a point
source:

Using Green’s theorem one can prove that

where J(r ,t) is the current source and Einc is related to
initials conditions on the electric field E(r ,t). For the rest
of the development, we take the Fourier transform of each
equation.

2.2 Vector wave function

The derivation of the dyadic Green’s function for a
cylindrical waveguide follows a well defined procedure :
find an expansion in cylindrical vector wave function. A
vector wave function, by definition, is an eigenvector of
the homogeneous vector Helmhotz wave equation. We use
three distinct vectors, denoted L , M , N , which are
linearly independent, and which form a basis for an
arbityry vector field.

We have:

2

1  

r
∇ ∧

r
∇ ∧

r
E(

r
r ,t) + 1

c2

∂ 2

∂t2

r
E(

r
r ,t) = −µ0

∂
∂t

r
J (

r
r ,t)

r
∇ ∧

r
∇ ∧

rr
G(

r
r ,

r
r ' ,t − t' ) + 1

c2

∂ 2

∂t2

rr
G(

r
r ,

r
r ' ,t − t' ) =

rr
Iδ (

r
r − r

r ' )δ (t − t' )

 

r
E(

r
r ' ,t' ) = −µ0 dv dt

r
J (

r
r ,t).

rr
G(r,r' ,t − t' ) + Einc.∫∫

664



We can define two eigenfunctions which satisfy the
Dirichlet boundary condition at r = rg (waveguide radius),
corresponding to the cylindrical wall of the waveguide.
They are

One can prove, with standard scalar product, that M , N,
L  are orthogonals but not normalised

2.3 Derivation of the dyadic Green’s function

After normalisation of the vector wave function, we
now apply the Ohm-Rayleigh method to derive the dyadic
Green’s function for the cylindrical waveguide. According
to this method, we first seek an eigenfunction expansion
for the source function using the vector wave functions
introduced in the previous section.

Taking into account the vector wave equation (1), we
follow the same procedure with the dyadic Green’s
function. We find.

By imposing the condition of radiation, one may carry
out the integration over kz. But one must first extract the
singularity in the last term which violates the Jordan
lemma.

3.4  Frequency analysis of electrical field

We now determine the expression that gives us the
frequency distribution of the electrical field at a point.
Taking the Fourier transform of (2) with (3), we find

We calculate the frequency distribution of radial
electrical field on the axis at end of the wiggler in the
TE11 mode. these conditions simplify the relation,
finally, we have:

This is the expression that we use in simulations.

3  SIMULATIONS
we generate, using the code SOLITUDE, the

trajectories of electrons that we use to calculate frequency
distribution of the spontaneous emission. This code is a
two-frequency, non-linear three-dimension simulation code
designed for the purpose of studying FEL amplifier
experiments. The electromagnetic waves to be amplified
propagate in a cylindrical waveguide and are expanded in
TE and TM modes. With the S.V.A.P. (Slowly Varying
Amplitude and Phase) approximation, we solve
Maxwell’s equations by averaging over a wave period λ
and obtain the amplitude and the phase evolution of the
first two TE and TM modes. Electron trajectories are
computed by integrating the Lorenz force equation. The
code takes into account of the adiabatic six-period wiggler
entrance. The coupled system of non-linear differential
equations obtained is solved by using a fifth-order Runge-
Kutta method (the variable step Messon method).At the
start of the wiggler, the electron beam position and
emittance are chosen to agree with experimental
measurements. Results of simulation made with
SOLITUDE are in generally good agreement with such
measurements.

SELF3D integrates the expression (4) according of the
time along an electron’s trajectory deduced from
SOLITUDE.
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4  RESULTS AND COMMENTS
We made three different simulations to study effects of

the seed wave in the development of 2.95 GHz. In the
first we introduced a large power (≈kW) at 35 GHz and a
weak (≈W) at 3 GHz. The first simulation thus
corresponds to the amplifier mode experiments. Results
are in a good agreement with SOLITUDE results and
experimental measurements

Fig 1 First simulation results

On the Fig 1, the simulation results show two peaks,
one broad at 35GHz and a strong sharp one at 2.95GHz

In the second simulation no power was injected
initially at 3 Ghz, this mode was not allowed to occur in
the SOLITUDE calculation.

Fig 2 Second simulation results
This simulation also finds two peaks at the same

position and with similar shapes, as shown in Fig. 2

Finally, we injected only low power at both frequencies
in order to simulate the SASE mode.

Fig 3 Third simulation results
Once again we have a strong sharp peak at 2.95GHz

and a weak broad peak at 35 Ghz, as may be seen in Fig.
3

 The two last simulations show that the low frequency
is due to the spontaneous emission by the electrons,
because no cooperative effect was introduce in
SOLITUDE calculations.
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