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Abstract electron trajectorygalculatedusing thecode SOLITUDE

(the code SELF3D is not already self-consistent)
The newcode SELF3D calculates the spontaneous

emission from electrons followindrajectories in the 2 THEORY][5][6]

magnetic field of a helical wiggler usirigénard-Wiechert

(LW) fields. These fieldsre exactsolutions of thewave 2.1 dyadic green function

equation for apoint charge. The spontaneous emission . , o

frequency spectrum is compared with experimental A dyadic Green’s function is a dyad that relatesetor
measurements at the CEA/CESTee ElectronLaser field to a vector current source. The usedpédic Green's
(FEL). In the future, SELF3D will use a self-consistenfunctions makes the formulatioand the solutions of

treatment of electron beam dynamimsd radiationfield ~ SOMe €lectromagnetic problems more compact; the
evolution in the magnetic wiggler. Thiapproach is symbolic simplicity they offer makes their use attractive.

particularly well-suited to the investigation afelf- However, only for afew simple geometries, like the

amplified spontaneous emission (SASE) when seed circular cylindrical waveguide, cathe dyadic Green's
wave is injected at start-up. function be solved in closed form. By definition, ttad

G is solution of thevector wave equatiowith a point

1 INTRODUCTION source:

Experiments realised at Commissariat al'Energie L 1 0% - J -
Atomique / Centred’Etude Scientifiques etTechniques [0 E(F,1) +=— E(F,t) = -, — J(F,1)
d’Aquitaine (C.E.A./C.E.S.T.A.) on bunching an intense c” ot ot
electron beanreportedthe presence otwo frequencies,

one at 35 GHz and an other strong frequency at@i9s. 0 OO OG(F,F',t—t') + —ZFG(F, rt-t)=
These FEL experiments ran in the amplifieodewith a ~
seedwave at 35 GHz. Measuremenshiowed that a |*5(r~ -F)o(t-t) 1

spontaneouslygenerated low-frequency modmmes to

dominate the high-frequency injected mode along )

distancesand late times [1][2]. Thislow-frequencymode Using Green’s theorem one can prove that

seems to belue to either spontaneous emission by the _ - -

electron beam or a transfer between 35 @#guency and  E(F',t) =~ [dv[dt J(r,1).G(r,r",t -t') + Einc. 2

3 GHzfrequency byco-operative effectsOur task is to

study the spontaneous emission of electron besimin whereJ(r t) is thecurrent sourc@ndEinc is related to
the framework of experiments atC.E.A./C.E.S.T.A., injtials conditions on the electric fiel(r,t). For therest

with the aim ofunderstandinghe 3 GHz bunching. This  of the development, we take the Fourier transforneazh
approachwasalreadytried by Tecimerand Elias [3] for  equation.

spontaneous emission of a highly relativisgtectron )
beam infree space. Theywsed Liénard-Wiecheretarded 2.2 Vector wave function
potentials and made aself-consistent algorithm to
calculate dynamicsnd fields. In the presenpaper we
propose to extend this approach, well adapted for
S.A.S.E. studies, to the case ofelactron beanmoving
in a cylindrical waveguidevith circular cross-section. In
the secondsection, we present our calculation of th
retardedelectric fieldwith Dirichlet boundaryconditions.
The calculation uses theyadic Green’s function. In
section 3, the SOLITUDE[4¢ode andthe SELF3D are
presented. In section 4, we present preliminary numerical
results obtained using the formalistaveloped insection

2. We calculate frequency distribution of the electric field,
on axis, at this end of the waveguigerresponding to an

The derivation of thedyadic Green's function for a
cylindrical waveguiddollows a well defined procedure :
find an expansion incylindrical vector wavdunction. A
vector wavefunction, by definition, is amigenvector of
the homogeneous vector Helmhotz wave equation. We use
Sthree distinct vectorsdenotedL, M, N, which are
linearly independentand which form a basis for an
arbityry vector field.

We have:
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M() i O(w(r)8é) with
1= J(F,t) =eV(t)o(F — (1))
N(r) = K D(‘/’(r)ez) f,(t) is the electron' s trajectory

then (iz + kz)l,U(F) =0 and V(t) electron’ svelocity
= — V] ~(e it
We candefinetwo eigenfunctions which satisfy the B ,w)—|aeuoIdtV(t).G(r,ro(t),w)e
Dirichlet boundary condition at r =, (waveguide radius),
corresponding tahe cylindrical waII of the waveguide. We calculate the frequency distribution of radial
They are electrical field onthe axis atend of the wiggler in the
TE11l mode. these conditions simplify the relation,

finally, we have:
E(Z, w) = Cst. w.
[d t(Jl(qler“” cos(65(1))io (1)

Yo (F) = 3, (k, r) (ne)e'k 2 and k? = k? + k2

Where J,, (k.r) isthe Bessel function of thefirst kind
And

fi 0M = 0 on Srelated to TE modes _ :
- 31(OI11ro (1)) sin(6, (1))ro (1) Gy (1))

7]
then kr = Gnm for E ‘Jn(qnmrg) =0
- - '(V ‘%1‘2 Zo (t)|+at)
NnON=0andnOL =0 on Srelated to TM modes 4
thenk, = Ky, for J, (Kyfg) = 0 w? o2
T2 1

ch_

One can prove, with standard scalar product,Nhal,
L are orthogonals but not normalised

L . . This is the expression that we use in simulations.
2.3 Derivation of the dyadic Green’s function P

After normalisation of the vectowave function, we 3 SIMULATIONS
now apply the Ohm-Rayleigh methodderive the dyadic we generate, using the code SOLITUDE, the
Green’s function for the cylindrical waveguidsccording  trajectories of electrons that we use to calcufiaguency
to this method, we first seek an eigenfunction expansiadlistribution of the spontaneous emission. Ttode is a
for the sourcdunction using thevector wave functions two-frequency, non-linear three-dimension simulation code
introduced in the previous section. designedfor the purpose of studying FElamplifier
Taking into account the vector wave equatigh), we experiments. The electromagnetic waves to be amplified
follow the same procedure with the dyadic Green's propagate in a cylindrical waveguidad are expanded in

function We find. B TE and TM modes. With th8.V.A.P. (Slowly Varying
&7 w)= Idk z ( Mo (F) My (F') ; Amplitude and Phase) approximation, we solve
1+ 50)2772 Rl (K + _@ Maxwell's equations by averaging over a wave pe#od
o "o andobtain the amplitudandthe phase evolution of the
o NN (P) Lo (F) L () ) 3 first two TE and TM modes. Electron trajectories are

computed byintegrating thelLorenz forceequation. The
code takes into account of thdiabatic six-period wiggler
entrance. The coupledystem of non-lineadifferential

By imposing the condition of radiation, one meary  equations obtained is solved by usingjféa-order Runge-
out the integration overz.kBut one must firsextract the Kutta method (the variable step Messon method).At the
singularity in the last term which violates tlerdan start of the Wigg|er, the electron beap@sition and
lemma. emittance are chosen to agree with experimental

; ; ] measurements. Results of simulatiomade with

3.4 Frequency analysis of electrical field SOLITUDE are in generally good agreememtith such
We now determinethe expression that gives us themeasurements.

2
Kbk (k + K =) i, (6 +Ki) 5

frequencydistribution of theelectrical field at apoint. SELF3D integrates the expression &yording of the
Taking the Fourier transform of (2) with (3), we find time along an electron’s trajectory deduced from
SOLITUDE.
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4 RESULTS AND COMMENTS

We made three differesimulations to studgffects of
the seedwave in the development o2.95 GHz. In the
first we introduced a large powerkW) at 35GHz and a
weak €EW) at 3 GHz. The first simulation thus
corresponds tahe amplifier mode experiments. Results
are in agood agreementvith SOLITUDE results and
experimental measurements
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Fig 1 First simulation results

Finally, we injected only low power at boftequencies
in order to simulate the SASE mode.
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Fig 3 Third simulation results
Once again we have strong sharp peak at 2.95GHz

and a weak broad peak at 35 Ghz, as may be seeigin
3

{GHz)
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The two last simulations show that the lé®eguency
is due tothe spontaneous emission by the electrons,
because no cooperative effeavas introduce in
SOLITUDE calculations.

On the Fig 1, the simulation results show two peaks,

one broad at 35GHz and a strong sharp one at 2.95GHz

In the second simulation no power was injected
initially at 3 Ghz, this mode was natlowed to occur in
the SOLITUDE calculation.
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Fig 2 Second simulation results
This simulation alsofinds two peaks at thesame
position and with similar shapes, as shown in Fig. 2
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