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Abstract

This paper describes the optimization of the optics and of
the collimator geometry for the momentum cleaning inser-
tion IR3 of the LHC. To collimate the off-momentum sec-
ondary halo without disturbing the circulating beam, the
normalized dispersion in IR3 is made as large as in the
arcs. The jaw locations and orientations are numerically
optimized to reduce the momentum-dependent halo ampli-
tude. The secondary halo is kept within the available aper-
ture for momentum deviations up to 0.44%, where the hor-
izontal aperture is4σ, compared to12σ on-momentum.

1 INTRODUCTION

The collimation insertions IR7 and IR3 of the LHC are
used forbetatronandmomentumcleaning respectively [1].
The latter system must leave the nominal circulating beam
unperturbed but be able to intercept off-momentum parti-
cles close to the top or bottom of the rf bucket. This re-
quires normalized dispersion in IR3 as large as in the arcs
(Sec. 2). The collimators consist of 4 primary and up to 16
secondary pairs of flat jaws. The code DJ (Distribution of
Jaws), [2] optimizes the locations and orientations of the
collimator jaws in a given lattice with the aim of restricting
the maximum extent of the halo generated from the faces
of the primary jaws. Only minor modifications to the al-
gorithm of DJ are necessary to describe collimation with
δ = dp/p 6= 0, as long as there are no bending magnets
between the first primary and last secondary jaws. This is
because within this section the “escape polygon” [2] (the
window in initial-angle space corresponding to trajectories
escaping all secondary collimators), is independent ofδ.

2 MOMENTUM CLEANING OPTICS

The betatron and momentumcleaning insertions of the
LHC will use similar magnet configurations. The nominal
ring separation is increased locally from 194 to 224 mm
using warm dogleg dipoles located at the ends of the long
straight sections housing the collimators. All quadrupoles
in these straight sections, which have to absorb high levels
of particle losses, are normal-conducting. Note that the lat-
tice functions in IR3 and IR7 are quite different: for beta-
tron cleaning the dispersion functionDx and its derivative
are tuned to zero at the primary collimators, whereas for
momentum cleaning large dispersion values are required.
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The additional requirement that the momentum collimators
must never touch the nominal circulating beam points to
the “normalized dispersion”Dx/

√
βx as the quantity to be

maximized. If its value at the primary momentum colli-
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Figure 1:β and normalized dispersion functions in IR3.

mator is large, even off-momentum halo particles close to
the nominal beam can be intercepted. Unfortunately the
impossibility of changing the machine geometry in the nar-
row tunnel around IR3 does not allow values larger than
in the arcs. In the proposed optics a normalized dispersion
close to the arc values is obtained at insertion quadrupole
Q5L3. Fig. 1 shows the insertion optics with the beam
going from left to right. Figure 2 shows a schematic plot
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Figure 2: Horizontal - longitudinal shaping of circulating
beam and halo by theprimarybetatron and momentum col-
limators.

of the horizontal mechanical aperture available around the
closed orbit for different momentum error values. The plot
is made for injection energy conditions and neglects chro-
matic effects. Only elements with thesmallestapertures are
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shown in the figure, the other elements being in the shadow.
The primary collimators are assumed to be flat and upright.
For an element with local horizontal orbit distortionxco,
rms betatron beam sizeσx, dispersionDx and mechanical
aperture±Am the number of sigmasNσ available around
the closed orbit is given by

Nσ σx + |δ Dx + xco| = Am

Locations with zero dispersion give horizontal lines (e.g.
aperture limits in the other insertion straight sections and
betatron collimators). Locations with finite dispersion give
lines with slope equal to±Dx/σx and thus proportional to
theirDx/

√
βx value. The nominal circulating beam inside

the rf buckets and the circulating off-momentum halo are
also shown. The latter can circulate with momentum errors
as large as±4.5 10−3.

3 CALCULATION OF THE HALO
GEOMETRY

3.1 Halo Definition

The halo is defined and the collimator locations optimized
for a single beam passage. When a mono-energetic “δ-
fraction” of the primary (circulating) beam is cut by the pri-
mary jaws, scattered particles with the sameδ (secondary
halo) are generated from each point of the primary jaw
faces. Fig. 3 shows a normalized phase-space plot for the
scattered particles in a region without bends, but where
there is non-zero matchedDx(s). Heres is the longitu-
dinal coordinate;η = Dx/

√
βxεx is the normalized dis-

persion;εx = 7.82 10−9 m.rad is the emittance at injection
and the derivativeη′ is taken with respect to the horizontal
phase advanceµx. In the following, all variables calcu-
lated at the point of scatterP = (x0, y0) on the primary
jaw located ats = s0 have index0 and we assume that
µx(s0) = µy(s0) = 0. Before the scatter, the turn-by-turn
positions of a circulating particle are on the circle(1) cen-
tred at(δη0, δη′0) with radiusAx,circ = |x0 − δ η0|. After
scattering(2), the amplitude becomes

Ax(x0, x
′
0) =

√
(x0 − δη0)2 + (x′0 − δη

′
0)
2 , (1)

and the corresponding halo trajectory within the straight is
(3), a circle about the origin,

x = x0 cosµx + x
′
0 sinµx, (2)

as is the trajectory of the centre(4).
The secondary halo generated from the source
P (x0, y0) is then defined to be the set of particle
trajectories with initial angles (x′0, y

′
0), horizontal ampli-

tude (1), and combined (x-y) amplitude

A(x0, x
′
0) =

√
(x0 − δη0)2 + (x′0 − δη

′
0)
2 + y20 + y

′2
0

(3)
For a pair (δ, P ) to correspond to a halo source, the fol-
lowing two conditions must be simultaneously fulfilled:

1) |x0| ≥ |δη0| and 2) x0 has the same sign asδη0
(the circle cannot intersect the opposing jaw (Fig. 3, left).
Therefore, the one-turn halo is defined for|δ| < δmax ≡
maxP |x0|/η0 (η0 > 0).

Fig 3, 1 Circulating
particle invariant cir-
cle. 2 Scattering. 3
Secondary halo tra-
jectory. 4 δ-centre
motion.

3.2 Halo computation

The task is, for eachδ in the circulating beam, to com-
pute the extent of the halo after collimation, i.e. the maxi-
mum amplitudesAx,max,Ay,max,Amax surviving all sec-
ondary jaws. Rather than scanning over all initial condi-
tions (x0, y0, x′0, y

′
0), DJ uses the mapping technique de-

veloped earlier forδ = 0 [2]. For fixed jaw locations, lat-
tice (µx(s), µy(s), η(s)) andδ, the steps are as follows:

1. A dense set ofNP halo sources, pointsP = (x0, y0),
is generated along the primary jaw borders.

2. For each sourceP :
– using the linear transformation ((2) and a similar one

in the y plane) the line boundaries of all secondary jaws
are mapped on to the initial-angle plane(x′0, y

′
0) and all

intersecting points of the resultant line-images are found;
– among these the program calculates the vertices
(x′0, y

′
0)i (i = 1, ..., N

(P )
vert) of the “escape polygon”.

The amplitudes (1), (3) at thei-th vertex are:Ax,i =
Ax(x0, x

′
0,i), Ai = A(x0, x

′
0,i)

3. The maximumAi is found by scanning over all
N
(P )
vert · NP vertices – this is the maximum escaping com-

bined amplitude:Amax = maxi Ai ≡ AiA . The code
also stores the corresponding vertex numberiA, sourcePA
and vertex coordinates(x′0,iA , y

′
0,iA) (maximum surviving

scattering angles – see [4] and references there). The same
is done forAx,max andAy,max.

3.3 δ-dependence of the halo limits. The con-
dition for zero normalized dispersion at the
primary collimator.

The set of vertices(x′0,i, y
′
0,i) is independent ofδ. It de-

pends only on the lattice and the secondary jaw setup, and
represents an escape window in angle space, whose cor-
ners move, or may be screened out, as the sourceP is var-
ied. The corner with indexi = iA determines the maxi-
mum escaping amplitude. Theδ-dependence of, say,Amax
comes: 1) explicitly, through the dependence (3) calculated
at (x0,iA , x

′
0,iA
, y0,iA , y

′
0,iA

) and 2) through theδ depen-
dence of the indexiA.

As δ increases from0, the maximum vertexiAx may
change many times, or not at all, depending on howη′0
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Fig 4. The escape polygon for fixed
P andA ≡ Amax, the maximum
distance (3) from the point T to a
vertex. Asδ increases, T advances
to T′, the maximum-vertex number
iA changes, butAmax is continu-
ous (A=A′). In the limiting case
η′0 = 0, T remains on the ordinate
axis and the maximum vertex is in-
dependent ofδ.

.

compares to its critical valuex′0,iAx /δmax. In the limit-
ing caseη′0 = 0, for a fixed source P, the maximum vertex
indicesiA, iAx and iAy are independent ofδ (Fig. 4). A
typical horizontal cutting angle for the IR3 lattice with an
optimized setup of 12 to 16 jaws is3 < |x′0,iAx | < 4. Amax
is a decreasing function ofδ (the preferred case for momen-
tum collimation) if|η′0| < |x

′
0,iAx
|/δmax ∼ 0.05/

√
εx.

3.4 Minimization

Minimization in DJ is carried out by the Simulated An-
nealing (SA) method [3]. For consistent results, the num-
ber of sources need not be larger than20 per primary jaw,
which in the case of 4 primary and 16 secondary jaws re-
sults in about 3/4 hour native computing time per SA call
on cernsp . The maximum amplitudes and derivative are
taken with appropriate weights in the minimized quantity:
W1A

2
max +W2A

2
x,max +W3(dAx/dδ|i=iAx −A

′)2, nor-
mally calculated forδ close to the edge of the bucket. Shap-
ing the functionAx,max(δ) (increasing the slopeA′ for de-
siredδ) is more effective, but less predictable for|η′0| >
0.1. For small|η′0| (∼ 0.01), choosingW1 = W2 = 1,
W3 = 0 ensures that the whole curveAx,max(δ) is shifted
downwards.

3.5 Maximum extent of the halo in the arc

At the location in the arc whereη reaches its maximum
value ηarc, the maximum allowed horizontal aperture is
12 σx (xarc < 12) [4]. This value follows from geo-
metrical considerations, taking into account vacuum cham-
ber section, maximum horizontal and vertical closed or-
bit displacements and mechanical alignments. In the arc:
xarc = Ax cos(µx,arc + µ0) + δ ηarc. As long asAx
is positive,xarc ≤ Ax + δηarc, and it is therefore suffi-
cient to find solutions for whichAx,max < 12− δηarc for
0 < δ < δmax.

4 RESULTS

Using the lattice of Fig. 1 we install one pair of horizontal
primary jaws, each6.4 σy wide, at maximum normalized
dispersionη0 = 0.153/

√
εx, (|η′0| ≈ 0). The jaw aper-

ture chosen (in units ofσ) is n1 = 7.8 (makingδmax =
0.0045), the smallest possible for betatron collimation pri-
maries set atn1 = 6; thus the line ”mom. collimator” in

Fig. 2 just touches the corner of the ”nominal beam” rect-
angle. 16 pairs of secondary jaws are set atn2 = 8.8 and
the quantityA2x,max+A

2
max is minimized forδ = 0.0045.

Fig. 5 shows the resultant momentum-dependent halo am-
plitudes: the horizontal amplitudeAx,max is seen to be
satisfactorily within the12 − δηarc limit set in the arc
focusing quadrupoles (whereηarc = 0.16/

√
εx), for all

δ < δmax. At δ = δmax the absolute value of the max-

Figure 3:DJ results for the maximum surviving halo amplitudes
as a function ofδ: (left) vertical and combined; (right) horizontal,
with the straight lines showing the12 − δηarc limits with errors
(dashed) and without (solid).

imum cut angle|x′0,iAx | is 4.07 (not shown) – equal to

the theoretical optimum
√
n22 − n

2
1 in the horizontal plane

(see [4]). The horizontal amplitude value shown on the
plot is Ax,max = 4.14. This is only a little above the
12 − δηarc limit (3.85). Decreasing the number of sec-
ondary jaws from 16 to 6–8 preserves the more important
Ax,max and leads to an increase of 1-2σ of Amax and
Ay,max. These are generated by a source withy0 = 3.2.
For a centred beam, few halo sources are expected that far
from the chamber axis, so the effectiveAmax andAy,max
are determined by beam position errors at the primary jaw,
which have yet to be studied.

The above result concerns an ideal jaw and lattice setup
and will be affected by chromatic and misalignment er-
rors. It has been estimated that mismatches inβ andDx [4]
could increase the arcη-value from 0.16 up to 0.2 (dashed
line). In further simulation runs we therefore allowed a
partial cut into the bucket area, allowing6 < n1 < 7.8
(with n2 = n1 + 1). For the deepest cutn1 = 6
(δmax = 0.0035, Ax,max(δmax) = 3.6), but largest er-
rors (ηarc = 0.2), Ax,max was well contained within the
horizontal aperture and theAmax(δ = 0) was8.5.

For a larger safety margin, it would be desirable to in-
creaseη0 by around20%, and this is believed feasible
through inprovement of the current optical setup.
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