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Abstract

A Free-Electron Laser (FEL) is under construction at
DESY in Hamburg, aiming at short wavelengths in the
VUV region. It makes use of the TESLA Test Facility
(TTF), a superconducting linear accelerator now under
construction at DESY in the framework of the TESLA
collaboration. Its purpose is to provide the technical basis
for TESLA, a superconducting, high-efficiency, high-
gradient linear e+/e- collider with integrated X-ray laser
Facility. The concept of a superconducting linac makes it
possible to choose a relatively small accelerating rf
frequency (1.3 GHz) and a large duty cycle (0.01). As a
consequence, the TESLA linac is indeed exceptionally
well suited for a short-wavelength Free-Electron Laser:
Excellent beam quality, mandatory for a high-gain, short
wavelength FEL, can be maintained during acceleration
due to small wake fields. A large variety of pulse train
patterns can be provided to serve various needs of
potential users. The VUV FEL at the TTF comes in two
phases, which are both approved. Phase 1 is the proof-of-
principle experiment to demonstrate the Self-Amplified-
Spontaneous-Emission (SASE) principle at wavelengths
down to 42 Nanometers and to cultivate the technology
necessary, such as small emittance photoinjectors, bunch
compressors, precise undulators, and appropriate beam
diagnostics. It will come into operation during 1999.
Phase 2 aims at 6 Nanometers and provides photon beams
for users.

1 FREE ELECTRON LASERS
 FOR SHORT WAVELENGTH

Over the past 30 years, synchrotron radiation has
turned into a most powerful research tool that has been
applied in many fields of science ranging from physics,
chemistry and biology to material sciences, geophysics
and even medical diagnostics. This rapid progress was
driven by the development of new, increasingly brilliant
sources based on electron storage rings. We believe that
due to the recent progress in accelerator technology the
possibility has been opened up to complement storage
ring based sources by ultra-brilliant Free-Electron Lasers
operating in the soft X-ray regime.

In a Free Electron Laser (FEL), an electron beam
radiates photons at much higher power and better
coherence than it does due to spontaneous synchrotron
radiation. The key point is that electrons moving in a
transverse magnetic field of alternating polarity
(undulator) may amplify an existing electromagnetic

radiation field (see e.g. [1]). The reason is that for
properly chosen phase and wavelength (see eq. 1) the
scalar product of the electron’s velocity vector and the
electric field vector does not vanish on average, resulting
in an average energy transfer between the electron beam
and the radiation field. As a consequence of this
interaction, depending on the relative phase, some
electrons get accelerated and others decelerated. This
results in a longitudinal density modulation of the electron
beam at the optical wavelength during the passage
through the undulator. With the onset of this
“microbunching”, coherent emission at the resonant
wavelength sets in which results in an exponential growth
of the power of the radiation field  (high gain mode):
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Similar to synchrotron radiation sources, there is no
fundamental limit in the choice of the photon wavelength.
The photon wavelength λph of the first harmonic is related
to the period length of a planar undulator λu by
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where γ = E/mc2 is the relativistic factor of the electrons
and K = eBuλu /2πmc the ‘undulator parameter’, e being
the elementary charge, m the electron rest mass, c the
speed of light, and Bu the peak field in the undulator. It is
seen that very short photon wavelength can be achieved if
only the electron energy (i.e. γ) is chosen sufficiently
high.

For most FELs presently in operation, the electron
beam quality and the undulator length result in a gain of
only a few percent per undulator passage, so that an
optical cavity resonator and a synchronized multi-bunch
electron beam are used.  For the TESLA FEL however,
we aim at very short wavelength, for which normal-
incidence mirrors of high reflectivity are not available.
Thus we have to provide an electron beam quality
(emittance, peak current, enery spread) good enough and
an undulator long enough to reach the power saturation
level within a single passage. At the satuaration length Lsat

≈ 4π Lgain , the electrons run out of resonance due to their
energy loss. For a schematic, see Fig. 1.

Also, if the desired wavelength is very short, there is
no conventional laser to provide the “initially existing
radiation field”. Instead, one may consider the undulator
radiation radiated spontaneously in the first part of the
undulator as an input signal. FELs based on this principle
of Self-Amplified-Spontaneous-Emission (=SASE) [2,3]
are presently considered the most attractive candidates to
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deliver extremely brilliant, coherent light with wavelength
in the Angstrom regime[4-6]. Compared to state-of-the-art
synchrotron radiation sources, one expects full transverse
coherence, larger average brilliance, and, in particular, up
to eight or more orders of magnitude larger peak
brilliance (see Fig. 2) at a pulse lengths of about 200 fs
FWHM. An important step has been done recently in
demonstrating a SASE FEL gain larger than 105 at 12 µm
wavelength [7,8].

2 THE TESLA FEL CONCEPT
TESLA aims at a 500 GeV e+/e- collider with integrated
X-ray laser Facility [6]. The problem with SASE FELs is
that, in going to shorter and shorter wavelengths, several
technical problems arise such as:
• Some 100m long undulators
• Small (normalized) emittance around 1 π mrad mm

for a 1 nC bunch charge
• Bunch compression down to 25 µm bunch length
It is  understood that the ambitious goal of an 1 Å FEL
cannot be achieved in a single step. Instead, three steps
are foreseen:
1. TTF FEL Phase 1 (approved) [9]: A SASE FEL

experiment at wavelength down to 42 nm using the
390 MeV TESLA Test Facility (TTF) at DESY[12],
see Fig. 3. Besides proving the principle, technical
components will be tested: the rf photoinjector, bunch
compressors, a 14m long undulator, diagnostics for
both electron and photon beams. First operation is
scheduled for 1999.

2. TTF FEL Phase 2 (approved) [10,11]: By adding 5
more TESLA modules [12],  the linac will be
upgraded to (at least) 1 GeV, bringing the wave-
length down to 6 nm, see Fig. 4. The undulator will
be 27m long and the rms bunch length will be
reduced to 50 µm by a further compressor stage.
Open to users by the year 2003, this facility will give
the opportunity to develop experimenting techniques

with extraordinary photon beam characteristics like
high peak power, short pulse length and fluctuating,
spiky substructure typical for SASE FEL photon
pulses [13].  Table 1 summarizes main parameters of
both electron and photon beams.

3. TESLA linear collider with Integrated X-ray Laser
(in its technical design phase) [6,14]. If large field
gradients are desired, even a superconducting linac
has to operate in a pulsed mode. That’s why there is
enough room for adding further rf pulses between
those driving the high-energy physics beam. By
adding a specialized injector providing the electron
beam properties needed for the FEL, one can indeed
utilize a linear collider installation for driving an X-
ray FEL without mutual interference.
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Regarding  preparation of electron beam parameters, all
the critical issues are being addressed during phases 1 and
2 (see also Table 1): An rf photoinjector with small
emittance and many thousand bunches within each rf
pulse [15,16], bunch length compression by magnetic
chicanes including control of coherent radiation effects
[17], acceleration without beam degradation [18], and
long undulators combined with a periodic FODO lattice
[19,20].

Fig. 1.  Schematic drawing of an FEL operating in the
“Self Amplified Spontaneous Emission = SASE” mode.
The peak current in the electron bunch is very high and
the undulator is long enough, so that power saturation is
reached during a single passage starting from noise.

Fig. 2. Spectral peak brilliance of short-wavelength FELs
compared with third generation radiation sources and
plasma lasers. For comparison, the spontaneous spectrum
of an X-ray FEL undulator at 20 GeV is also known.
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Table 1: Main parameters of the TESLA Test Facility
FEL (TTF FEL)[10]. The insertion device is a planar
hybrid undulator. These values should be used as a
guideline only since experimental experience has still to
be gained in this wavelength regime.

Parameter Units Value
beam energy GeV 1.000
λph (radiation wavelength) nm 6.4 (193 eV)
λu(undulator period) mm 27.3
effective undulator length m 25
rms beam size mm 0.05
εn (normalized emittance) in
the undulator

π mrad mm 2.0

peak electron current A 2490
No. of electrons per bunch 6.24E+9
No. of photons per bunch 4E+13
rms energy spread σγ/γ 10-3 1.00
rms bunch length σs µm 50.
Lg (power gain length) m 1.00
Psat (saturated power) GW 3
average brilliance
[photons/s/mm2/mr/0.1%]

up to 6E+21

bunch train length µsec 800
number of bunches per train up to 7200
repetition rate Hz 10
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Fig. 4. Schematic layout of phase 2 of the SASE FEL project based on the TESLA Test Facility at DESY. The linac
consists of 8 TESLA modules, each 12.2m long. The over-all length of phase 2 is some 300 meters.

Fig. 3: Schematic layout of phase 1 of the SASE FEL
project based on the TESLA Test Facility at DESY.
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