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Abstract

| propose a new method for laser acceleration of relativis-
tic electrons using the leaky modes of a hollow dielectric
waveguide. The hollow core of the waveguide can be ei-
ther in vacuum or filled with uniform gases or plasmas. In
case of vacuum and gases, T'M,; modeisused for direct ac-
celeration. In case of plasmas, £ H;; modeisused todrive
longitudinal plasma wave for acceleration. Structure dam-
age by high power laser isavoided by choosing acoreradius
much larger than laser wavelength.

1 EIGENMODE PROPERTIES

The capillary waveguide considered here is made of a hol-
low core with an index of refraction 11 and radius R, em-
bedded in a dielectric medium with an index of refraction
vo. We areinterested in the regime with \; /R < 1, where
A1 = A/rp and X isthe wavelength in vacuum. Asaresult,
the EM wave in the core is dominantly transverse. Assum-
ingvv? —1> A\ /R, wherev = vy /11, the eigenmodes
of the waveguide can be solved following the same proce-
dure by Marcatili and Schmeltzer [1].
Expressing the eigenmodes in the following form

E _ E771(Ta¢) W(Bimz — wt) — aym 2
R ={HoGG e @

the eigenvalues are given by
_

At
where v, = 27R/Upn A1 > 1, and Uy, is the mth root

of the equation, J;—1(U,n) = 0. There are three types of
modes, corresponding to
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For laser acceleration, we are interested primarily in two
modes. T'M,; mode for acceleration in vacuum and in
gases, and E H1; mode for acceleration in plasmas. Corre-
spondingly, we consider three cases: Jv; = 0 when the core
isin vacuum, 6, > 0 and dv; < 0 when the coreisfilled
with gases and plasmas, respectively, where vy = v; — 1
and |6v1| < 1. Itisnoted that £ H;; mode is often desig-
nated as H F;; mode elsewhere in literature, in this paper
we follow the notation in reference [1].
TheT'My; modeis given to the leading order by
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similarly, EH; modeis obtained as
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where E,, isthe peak acceleration field, F the peak trans-
verse field, Z, the vacuum impedance, and k.1 = (U —
ix/7v4)/R. Only the dominant transverse components are
specified for £ H,; mode. For r > R, al fields have the
radial dependence exp(ik,or)/+/r, where to leading order
k.o = kiv/1?2 — 1. A non-vanishing imaginary part of v
dueto slightly lossy dielectric medium will giveriseto ex-
ponential decay of fieldsin radial direction.

Notice £ H,, mode is linearly polarized, while T My,
mode is radially polarized. However, when necessary, lin-
early polarized mode can be formed by a proper mixing of
T My, with another hybrid mode, £ H5; mode, while pre-
serving E, of T'My; mode on the axis. For the three modes
we have Uq1 =2.405, and Uop1 = Uy =3.832.

Animportant concern for using awaveguidefor laser ac-
celeration is power damage on the structure. To evauate
surface field, we expand the dominant transverse field at »
= R using the expression for k,.; and obtain
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For T'My; mode, surface field is of the same order as the
peak acceleration field. For both modes surface fields are
much smaller than the peak transversefield.

Coupling between the waveguide modes to free space
Gauss-Laguerre modes is very efficient. When focused at
the waveguide input cross section, power coupling from
T E My, to T My, reaches a maximum of 97% at wo/R =
0.56, and from T E Mg to EH1; 1S98% at wy/R = 0.64,
where wy isthe Gaussian beam waist. Despite the fact that
the modes are leaky the guiding can be quite effective with
rather long 1/e power attenuation length L1, = 7§R/ 2.

2 ACCELERATION IN VACUUM

According to Eq.(2), phase velocity of the T'My; modeis
larger than the speed of light, ¢
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We define an accel eration phase slippage length over which
arelativistic electron, while gaining energy, dips a full =
phase with respect to the acceleration wave
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Over this distance, energy gain of the electron on-axisis
La
AW, = eEa/ sin(rz/Lq)dz = eE,L, T, , (10)
0

where T,, = 2/ is areduction factor due to a = phase
dlippage during acceleration. Here we have neglected the
small attenuation of the acceleration field over a distance
L,. Inpardlél, let's also define a deceleration length, L4,
over which the electron slips another 7 phase while losing
energy AW, = eE,LqT,, where T,; can be different from
T,if Ly/L, # 1. Theaverage acceleration gradient during
aperiod of 27 phase slippage is then given by

1 — (La/La)(Ta/Ta)
1+ Lyg/L, ’

where G, = AW, /L, = eE,T,. To have net acceler-
ation, the ratio L,/ L, should be made small. This can be
done by introducing a magnetic field during the half period
of deceleration. The effect of magnetic field is to reduce
longitudinal velocity of the electron such that it slips faster,
thus taking less time or shorter distance, L .

For simplicity, we assume the field is sinusoidal with a
period A, By = By cos(2mz/\,). Thelength Ly for an
phase slippage is then defined by
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G=—T.71, %

(11)

{1 1 afu} wLlg a2, . {477Ld

v TR T,

} =7, (12)
where a,, = eBo, /27 2me. If weset A, = Lq then

A
192+ 1/72 + a2 /4%’

and a,, is now determined by

A = Q/Q1+\/Q¥+Q§+§/Q1— QI+ Q3, (14

with Q1 = eBo\y?/4mv/2mc and Qo = [1 + (’y/'yg)Q]/&
Dueto longitudinal oscillation, T is different from T,

Ly = (13

(15)
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wherex = (1 — Lq/L,)/4. Thevadue of T, variesin the
range {1.84 < 2}/x for Ly/L, intherange {0 < 1}.
We have assumed the electron is decel erated by the on-axis
vaueof F,, but asthe electron is deflected off-axis, it will
see aweaker field. The maximum transverse orbital offset
inthe wiggler field is AX ae = V2w /Y.

Dueto magnetic deflection, electron will radiate and lose
energy. Energy loss per wiggler period is
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where r. isthe classical radius of electron. The maximum
possible energy that can be accel erated with thismethod can
be determined by the condition: AW, > AW, + AW.

Transverse forces dueto EM wave do not cancel to order
of 1/~? in awaveguide mode, thus giving rise to either fo-
cusing or defocusing depending on acceleration phase, ¢,
which varies constantly dueto sippage. The corresponding
betafunction is

By = YoMy (yme2 [meXEusin 6,) /[ — (15/7)°] . (A7)

the term grouped in thefirst bracket on theright isthe ratio
of electron energy to its energy gain per wavelength.

3 ACCELERATION IN GASES

The phase velocity of the T'M,; mode in gasesis given by
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The corresponding phase slippage length is then
A
leip = (19)

|1/92 +1/7% = 20v1|

The phase matching condition isobtained by making the de-
nominator zero, thus dv; = 1/272 + 1/2~. This condi-
tion suggests an alternative way to maintain phase matching
as vy increases during acceleration: instead of varying évy,
one may changey, by tapering waveguideradius. The beta
function in gasesis smaller than that in vacuum by afactor
of v2inthelimitv, /v < 1.

4 ACCELERATIONIN PLASMAS

Wave equation for laser field propagation in weakly rela-
tivistic plasmas under cold fluid condition is given by
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The plasmadensity modulation, dn/ng, driven by the pon-
deromotivepotential of alaser pulse, a2 = <|eE; /mcw|”>,
will generate awakefield, E,, = —V®, where the wake po-
tential, ®, is determined by
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(21)
To close the loop, dn/ng is given by Poisson’s equation:
V2® = (e/eg)dn/no, Where w,=\/e2ng/eom and gy =
1/Zyc. The approach here parallelsto that in reference [2].

Under the condition a® < 1, we will have dn/ng < 1.
Asaresult, the second and third term on theright of Eq.(20)
can be dropped and the wave eguation is then decoupled
from the plasma equations. The only effect of plasma on
laser propagation is through an index of refraction v;=1 —
w?/2w?. Consider a capillary tube filled with a uniform
plasma of density ng, a laser pulse propagating through
the waveguide will excite a wakefield with phase velocity
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equalsthe group velocity of the pulse. For £ H;, mode, the
group velocity is given by

dw c

T dBy 1+ 221 1/2927

wherey, = w/w, > 1. Introducingavariable = z—wv,t,
Eq.(21) can be solved as

Vg (22
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where k, = w,/v,. For aGaussian pulse of £H;; mode

ag

a*(p,C) = I3 (Unp)em <207/ bavm - (24)
where p = r/R, the wake potential behind the pulseis
P = —ByJ3(Urip)e */ Farn sin (kpz — wpt) ,  (25)
Oy = (\/ﬁmCQ/éle) a3 ko, e~ (kpo2)?/2 (26)
Longitudinal wakefield isthen given by
E,. = Eajg(Unp)e*Z/L““" cos (kpz —wpt) , (27)
and transverse wakefield by
Euwr = =2(7p/79) EaJo(Ur1p)J1(U11p)
e~/ Lattn sin (kyz — wpt) (28)

wherethe peak accelerationfield, £, = ®ok,, ismaximized
if thelaser pulselength is chosen according to the condition
kpo. = 1. From hereon, wewill usethisoptimal condition
wherever it isrelevant.

There are several characteristic length parameters for
laser wakefield acceleration. First, the slippage length is

)‘P
/42 +1/72 =1/
Next, the pump depletion length, Ly, is defined by the
condition W; = W,,,, where W, istheinitial energy of the
laser pulse given by
o A 27TJ12(U11)R2/\;DE§
o 4ZOC ’

and W, is the energy in the wakefield the laser pulse left
behind as it propagates a distance L, given by

Lgip = (29)

W, (30)

W, = (wme/4e)[eo/Exp(1)]agw? R’
Lpump[lz + (’Yp/vg)217’] .

The two terms above correspond to energy in the longi-
tudinal and transverse wakefield, respectively, and the de-

fined integralshavetheval ueIZ:fo1 dppJ§(U11p)=0.0762,

L=} [ dppJ3(Ur1p) J2(U11p)=0.00635. We then have

(31)

Lpump = [4V271J3(U11)Exp(1) /77
)‘P
ag(L /72 +I1./42)
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In calculating W, we have left out the attenuation factor
exp(—z/Lattn) SiNceitischaracterized by aseparate quan-
tity, La#n. Given group velocity dispersion, Eq.(22), a
pulse will doubleits length over a propagation distance
Lo V3 7 A
WP w12

Finally, the beta function due to the transverse wakefield is

By = <2/U11)[EXp(1)/2ﬁ]1/4\/£Z .

5 EXAMPLES

In the following exampleswewill use A = 1um, vy = 1.5,
assume an initial electron energy of 1 GeV, set sin ¢,=1,
and neglect the small difference between T;, and T},.

(33)

(34)

Table 1. Laser Acceleration in Vacuum.

P[TW] | 100 | E,[GVIm] | 37
R/\ 250 | E,[GV/m] | 3.0

Yg 410 | G[GV/Im] | 11

By [T] 15 | AW, [GeV] | 0.38
. 6.2 | AW, [GeV] | 0.15
Latin [M] | 10 | AW, [eV] | 88
B [cm] 12 L, [cm] 16
AXpaz/R | 035 | Lg[cm] 6.2

Acceleration in gases requires 5v; = 3.1 x 1076, Energy
gainin plasmasisdefined by AW, = eEqLgiipTy.

Table 2. Laser Acceleration in Plasmas.

P[TW] 20 | E,[GV/m] | 0.94
Wi [J] 27 | E;[GVIm] | 17

ag 0.28 | AW, [GeV] | 0.56

p 100 Lgiip [M] 0.94

no [10'7/em3] | L1 | Lyump [M] | 126
R/ 150 | Lgisp [M] 52

Vg 392 | Lattn [M] 7.9

0, [pm] 16 B¢ [cm] 16

6 CONCLUSIONS

| have introduced the concepts and techniquesthat will sig-
nificantly advance the development of laser acceleration.
Thiswork was supported by the U.S. Department of Energy
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