
BEAM DYNAMICS SIMULATION CODE FOR THE OAK RIDGE
SPALLATION NEUTRON SOURCE RING∗

J. Beebe-Wang, M. Blaskiewicz, A.U. Luccio, BNL, Upton, NY 11973, USA
J. Galambos, J. Holmes, D. Olsen, ORNL, Oak Ridge, TN 37831, USA

∗ Sponsored by the Division of Materials Science, U.S. Department of Energy, contract number DE-AC05-96OR22464

Abstract

We describe the principles of a computer code to
simulate in 6 phase space dimensions the dynamics of a
high intensity particle beam. The immediate purpose is to
study the 1 GeV proton accumulator ring for the
Spallation Neutron Source to be built at Oak Ridge.

INTRODUCTION

There is a joint effort between National Laboratories in
the USA to study and build at Oak Ridge an accelerator
based pulsed neutron spallation source, SNS[1]. The
accelerator system of the facility consists of a 1 GeV
proton linac followed by an accumulator ring. The design
beam power is 2 MW, corresponding to a very intense
circulating current in the accumulator (2.1014 ppt).
Uncontrolled beam losses should be limited to 10-4.

Ring beam dynamics is being studied by two teams, at
Oak Ridge and Brookhaven. For some time we used
ACCSIM[2], then we decided to write a new code,
SAMBA (Sensible Analysis Model for Beams in
Accelerators). SAMBA is written in C++, for two main
reasons: (i) to achieve a more natural parallel code
development (C++ is the standard in Industry, where
teams of programmers work on the same code), (ii) use
the supervision of a SuperCode allowing the coexistence
of compiled and interpreted modules.

6-dimension simulation codes, including space charge,
are essential tools for the study of high intensity beams.
The real problem is how to implement the known
physical formalism to obtain credible results in
reasonably short computer run times.

The accelerator descriptor is MAD[3], a well developed
and maintained code able to produce first and second order
orbit transport maps and to handle lattice errors.

PIC MODEL

 The beam is represented by random macro particles
(typically 105) in 6 dimensions. For orbit transport, the
lattice is subdivided in a few sections. First order R 6x6
matrices and second order T maps for each section are
produced by MAD. For distorted closed orbit due to
applied orbit bumps, typically at injection, or to lattice
errors, the matrices are accordingly displaced.

 Transverse Motion

 In the transverse phase space, space charge kicks are
applied to the macros. Betatron tune distribution in the

beam is calculated. With y the vertical, x the radial and s
the longitudinal coordinate of a macro, transverse motion
is in (x, px, y py). To calculate transverse space charge
kicks, at the end of each machine section the beam charge
distribution ρ is obtained by binning and counting in a
regular mesh. From ρ, the space charge force is calculated

r r r r
F

ec Ne
g g

r
rd() ,

()
P

Q
Q= = ∫µ

πγ
ρ0

2

2 34
(1)

 on an individual macro at P by action of an element of a
continuum at Q at a distance

 r r r2 2 2 2= +⊥ γ || (2)
 with a relativistic longitudinal dilation factor γ2. The

longitudinal part of the integration is almost a constant
unless we are close to either end of the bunch. Factoring
out the longitudinal charge density as

 ρ ρ ρ() ||Q = ⊥ (3)
 the integration loses one dimension and we treat the beam

more as a bundle of spaghetti than a cloud of points.
 At the end of a machine section of length L a space

charge transverse kick is applied to every macro at P

δ

β
p P⊥ = ≈∫

r v
F dt F

L

c
L

() (4)

 The betatron tune distribution in the beam is calculated
as the local derivative of the force. It gives indication on
the transverse stability limit, but is not directly used.

The calculation of the transverse space charge force is
the single most time consuming algorithm. Many
strategies to cut this time all derive from the observation
that, at least during one turn, the general shape of the
charge profile would not change much, leading to the
concept of “rubberbanding” of the distribution -a given
shape calculated once per turn is stretched or compressed
by radial scaling factors from one interface to the next-

Scaling can be derived (i) from a statistical evaluation
of the emittance, (ii) by proportionality to the square root
of the Twiss beta function, (iii) by using the envelope
equation integrated in a Core model (see later), (iv) by
fitting the calculated force profile and transferring the
coefficients to the next interface.

Transverse space charge forces introduce coupling
between the radial and vertical motion. The betatron
oscillation differential equations

x K x f
F x y

m c

y K y f
F x y

m c

x x
x

y y
y

"
(,)

"
(,)

+ = =

+ = =










2

0
2 2

2

0
2 2

γβ

γβ

(5)

1210

are coupled. The tune spectrum in one mode will contain
side bands due to the other mode[4]. Polynomial
expansion of the function at the r.h.s of the equation
yields, to first order, a tune shift

∆ν
β γ ν

= − r N g

r
o r
2 3 2

(6)

with r0 the proton classical radius. For unimodal charge
distributions (say, Gaussian), Eq. (6) gives the maximum
tune shift in the center of the beam. To higher orders,
Eqs. (5) lead to higher order nonlinear tune terms and
coupling.

SAMBA statistically calculates the emittance of the
beam as the determinant of the covariance matrix

ε 4

2

2

2
=



















det

x xp xy xp

p x p p y p p

yx yp y yp

p x p p p y p p

x y

x x x x y

x y

y y x y y x

(7)

The radial emittance -and similarly the vertical- are
defined as

ε x
x

x x
x x

x xp

p x p
x p xp2

2

2
2 2 2=







= −det (8)

It is then ε ε ε4 2 2= +x y coupling terms

If there is no coupling, horizontal and radial emittances
should be individually monitored during tracking.

Longitudinal Space. Impedance Budget

The linear part of transport is done with the last two
rows and columns of R . The equations of synchrotron
motion deal with the non linear part

φ φ τω δ

δ δ
β

φ φ

n n RF

n

n n h n s
h

H

p

p

p p
q

c
V h h

+
+

+
=

= + 





= + −()









 ∑

1

1

1 2
1

sin() sin()

(9)

In particular we studied the RF barrier voltages produced
with two frequencies[8].

In the longitudinal, other than RF voltage action we
have space charge kicks calculated via an impedance
budget

δ
β

p
q

c
I ZSC n k k, = ∑2 (10)

where Ik are the Fourier components of the beam current
and Zk the longitudinal impedances. Commonly, the
largest is an imaginary impedance for cylindrical perfectly
conducting walls, proportional to ∂ ∂I s , the longitudinal
current gradient in the beam[5]. This gradient can be
numerical very noisy if calculated from the distribution
and some smoothing is needed. Fourier filtering is
naturally provided by the already done FFT of the beam.

Foil. Losses

Injection in the SNS ring is accomplished via multi-
turn injection of H- ions stripped in a foil. The acceptance
is painted by moving the equilibrium orbit at the foil
with a collapsing magnetic orbit. SAMBA simulates
orbit bumps as well as ion conversion and scattering in
the foil. Lost particles by interactions with walls or
collimators, or not being converted at the foil are
accounted for and subtracted from the cycle.

CORE MODEL.

To be trustworthy, the calculated beam behavior must
agree with experimental data and with established theories.
Thus the validation of the code is an essential exercise.
Validation can be done e.g. if we believe that the beam
shows a Core behavior plus a Halo. A core calculation
based on the solution of the differential equation for the
envelope would show the main feature of beam
propagation, so, the results of a CORE model [6] should
continuously guide and control the PIC model results.
PIC itself will best describe the details and the formation
of Halo. The integration of CORE and PIC is one of the
future development considered for SAMBA.

PROGRAMMING

SAMBA is written in C++, and operates within the
SUPERCODE[7] driver shell. It is useful to explain the
relationship between user provided “physics” modules and
the driver shell. Conventional scientific programs have a
prescribed flow of logic originating in a main program.
Often there are some program flow choices, governed by
appropriate choice of input variable settings. The program
execution remains in compiled code until program
completion. If the user desires some new flow logic, an
edit-compile (debug) programming cycle is required.

On the other-hand, the SUPERCODE is a programmable
driver shell, which can execute interpreted script files as
well as compiled “physics” modules. Generally, runs are
done by reading in a “script” file, that is more than a
typical “namelist” stream which simply assign values to
variables. In SUPERCODE, calling sequences to compiled
code can be customized within a script “input” file. In fact
there is no fully compiled set of logic to do a run. Rather,
only the “general purpose” physics modules are compiled,
and the calling sequences, looping, initial variable
settings etc. are done through the shell. Routines can be
entered on-the-fly in script files.

Both interpreted and compiled code have their place.
Compiled code is in general faster. Compiling everything
however leads to code clutter (i.e. one-off numerical
experiments, or scans that are never used again, along
with control variables). The general philosophy for the
separation of interpreted / compiled code is: (i) code that is
execution intensive, and/or general purpose is compiled.
Examples of compiled code would be particle transport
through a matrix multiplication operation. (ii) Code that
is problem specific and generally not called often during a

1211

run is interpreted. Interpreted code examples are variable
initialization, setting up parametric scans, etc.

The procedure for actually constructing “physics
modules” to be run with the SUPERCODE shell is
described in Ref.[7]. When adding a new module in
practice, it’s usually sufficient to mimic the method of
an existing physics model. The Module Descriptor File is
a useful place to get information about a module. It lists
all the variables and routines that the Driver shell knows
about in that particular Module. This is the place where
these quantities should be documented. Variable quantities
in these files can be manipulated from the Shell. The
routines in the Module descriptor files can also be called
from the Shell. In fact, putting together a set of variable
initializations, and routine calls in a script file is how a
“run” is typically done.

The driver shell can not directly access class members.
To access class members from the Shell (manipulate,
view, etc.), a Module routine must be written (and
compiled) to perform the appropriate manipulation.
Examples where this may be done would be a routine to
create a macro-particle, or a routine to dump macro-
particle information to a stream. These compiled routines
could then be called from the Shell, and the actual class
member manipulations would be performed when the
compiled module is called.

Class Hierarchy for Ring and MacroParticles

For tracking of macro-particles around a ring, two main
ideas come to mind: the macro-particles and the Ring
elements. These are each represented as classes. The actual
user implementation of these classes is done via
“modules” that contain the user interaction mechanisms
for instantiating objects, performing member function
calls, etc. The Macro-Particle class is a simple container
class to hold information specific to each macro-particle.
A macro-particle object contains a reference to a
synchronous- particle object. (There is a separate Sync-
Part class to hold the synchronous particle information).
The synchronous particle must be instantiated before any
macro-particles can be created.

As the macroparticles circulate, operations will be
performed on/with them. E.g. they may undergo a matrix
transfer, or a space-charge update, or a dump of
information. Each operation will be performed at a “node”
of the Ring. The Node class represents the common set of
features such operators have. As this is an abstract class,
no Node objects will be created, but rather this class will
be inherited by sub-classes that will have actual objects.

Each node can do some operation with the macro-
particles. Two Node member function hooks are provided
for this: (i) a node-Calculator, and (ii) an update-Part-At-
Node routine. The first is a place where preliminary
calculations are done, which depend on more than one
macro-particle. The second operates on an individual
macro-particle. For example, a “Transfer matrix” node
could advance a single macro-particle through a matrix.

Examples of Node sub-classes are: (i) a Transfer-Matrix
class for transporting macro-particles around the Ring, (ii)
a L-Space-Charge class to give longitudinal space charge
kicks, and (iii) a RF-Cavity class to give RF voltage

kicks. When a Node sub-class is added, a constructor
should be supplied. Also, at least one calculator should be
supplied (either a node-Calculator or update-Part-At-Node).
With these class members defined and declared, we know
both “when” each node should be called as we work our
way around the Ring and “what” it should do.

MODULES

A macro-Particle module contains the interfaces
between the user/shell and the macro-Particle class.
Member functions in this module offer a window into the
macro-Particle class. The add-Macro-Particle routines
allow direct addition of a macro-particle with specified
values. It can be called directly from the shell or from
other modules.

The Ring module is a general module which controls
the execution flow for particle tracking. Although it has
no classes itself, it contains initialization routines to
determine the order in which the Node class actions are
performed, and the looping routines that actually perform
the calls to the Node class calculators.

Modules for Derived Node Classes

Modules includes capabilities for adding a foil, and
automatically injecting particles at the foil at each turn.
They contain a Foil class which includes information
about the foil. Transfer matrices are a fundamental
mechanism used to transport macro-particles from one
point in a ring lattice to another. A Trans-Matrix class is
provided to contain transfer matrix information. The
closed orbit of the Ring can be artificially altered
anywhere in the Ring by introduction of an ideal bump.
The Node sub-class used to contain the bumps is the
Ideal-Bump class. A module is provided to add RF
cavities. The Node sub-class is the RF-Cav.

Miscellaneous calculations are performed by specialized
modules. Presently, the only calculation done here is to
find the emittance of the macro-particles, Eq. (7).

REFERENCES

[1] SNS Collaboration, “The National Spallation Neutron
Source”, NSNS/CDR-5 1997
[2] F.W. Jones, “Users Guide to ACCSIM “, TRI-DN-90-
17, June 1990.
[3] F.Ch. Iselin, “The MAD Program, Version 8.7”,
CERN/SL/92(AP), July 17, 1992
[4] A.U.Luccio, ”Numerical Calculation of the Tune
Spread Induced by Transverse Space Charge in a
Synchrotron”, BNL/NSNS TechNote 023, Jan. 29, 1997
[5] A.W. Chao,“Physics of Collective Beam Instabilities
in High Energy Accelerators”, Wiley, New York 1993
[6] J.Holmes, J.D.Galambos, D.K.Olsen, and S.Y.Lee,
“An RMS Particle Core Model for Rings”, Proc. Shelter
Island Workshop, May 2-5, 1998
[7] S.W. Hanoi, “Using and Programming the
SUPERCODE”, July 21, 1995
[8] M.Blaskiewicz, M.Brennan, Proc. EPAC’96, p.2373

1212

