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Abstract

An analytic model for emittance growth in the round
beam transported in arbitrary electrostatic channel is pre-
sented to reproduce the main features of the beam dy-
namics in real, nonlinear fields. The model bases on the
set of equations for adiabatic transport of single-fluid
plasma which can be reduced to the equations with re-
spect to the coefficients of aberration representation for
the beam flow lines. The first equation closes to envelope
equation for  K-V beam. The second equation defines
disturbance caused by field nonlinearity and the other
effects in the beam interior. Simple combination of their
solutions gives so-called fluid part of  rms emittance re-
sponsible for beam phase-ellipse crooking. If the solu-
tions are within some limits the beam distortion will stay
reversible. Otherwise beam appears as a multi-stream or
turbulence flow, entropy of which grows due to multival-
uedness of stream velocity.

1  INTRODUCTION

A tendency to consider halo formation in Liouvillian
beams as a randomization process or chaotic behavior of
the single particles is observed, although emittance is
statistical parameter. Furthermore these particles are con-
sidered as the test ones, and their migration does not
change the beam field. Halo formation appears as escap-
ing particles from the beam core so is transfer of mass
and driven by the mass flow velocity. If beam collision-
less is true, phase space projection area may grow only
because of coupling between degrees of freedom. An
affective area may rise due to filamentation in nonlinear
fields.

Much used now the idea of relating emittance
growth to an expected redistribution of  space charge and
to the beam field energy released in this process allows an
asymptotic estimation only [1]. The reason is lack of an a
priory information on the real beam profile at given sec-
tion. In evolution process, a beam, like charged plasma,

infinitely extends in free space and tends to an equilib-
rium configuration in confining fields. At the equilibrium
configuration, the total electric field counterbalances ex-
actly heat motion of beam particles and is entirely absent
in the cold beam. Such equilibrium configurations can be
computed [2]. In practice, the space charge distribution
oscillates about  equilibrium one due to excess of energy
(free energy). A change in the confining field as well as
the free energy conversation into emittance growth will
modify the equilibrium configuration. Hence, actual
emittance growth is determined by the details of the dy-
namical process, the simplest model for  that is described
below. The model employs the concept of beam flow
lines. Tangent to the flow line specifies direction of the
particle average velocity at the point of tangency. In ordi-
nary case, the phase coordinates of the flow lines corre-
spond  to  axis of the ellipse which presents the beam in
the phase space (Fig.1).
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which is often referred as a temperature tensor too. Rela-
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tionships between mass-flow velocity, charge density and
temperature tensor are known as the equations for transfer
of mass, momentum and heat [4,6], and derived by inte-
grating the Vlasov equation over the velocity space. The
equations for the temperature tensor involves the third
moments of the distribution function, which in turn in-
clude the fourth ones, and so on indefinitely.

In the model, charge particle flow is considered
neglecting the third moments and nondiagonal terms of
temperature tensor. Physical sense of the limitation will
discuss later on. For these assumptions the set of transport
equations for axisymmetric beam with no magnetic field
follows [4]:
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The equations above give the well-known integrals along
flow lines:
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The flow lines are governed by the equation    ¢ =r V VR Z

and can be expanded in the terms of Lagrangian variable
x  marking  initial location of the flow lines in the phase
plane. Discarding the higher terms in the expansion, i.e.,
considering the lines of flow near axis, one may write
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The coefficients R and c  can be found from the set of
equations disposed in frame at the bottom of the page,
where I is the beam full current. In obtaining Eqs. (1)-(2)
all longitudinal thermal effects have been ignored by put-
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been assumed (details see [9]). The most important mac-
roscopic quantities can be expressed in the terms of  R
and c  as follows: the current density
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the fluid part of rms emittance (definition see [5], Fig.1)
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(the factor k closes to unity, being slowly dependent on
the transverse beam profile). The consideration c c¢ = ¢R R

is obviously required for the phase ellipse to appear with
no distortion. The ratio R= -3c indicates origin of so-
called fold with two-stream character of the local velocity
distribution (Fig.2). “Bifurcation point” corresponds such
x that ( ) ( )dr d dr dx x¢ = 0.The well-known causes of

the phenomenon are: first, nonlinear total transverse
force; second, nonlinear transverse pressure of particles;
third, spread in the longitudinal average speed across the
beam due to the field divergent property. They may be
described as oscillation frequency dependence vs. ampli-
tude and interpreted as resonance overlap mechanism
[3,8]. Hence, the aberration model gives reliable criterion
for the most fast stage of the halo formation, scenario of
which sketched in Fig.2.  For a particular case, the model
allows to describe analytically evolution of the space-
charge density shape and rms emittance. An optimal
transport conditions are found to be in a special profile of
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beam and a certain phase shift per cell [10]. The model is
best suited to design optics with compensated aberration
by beam transverse profile control.

3  DISCUSSION

The applied set of equations ignores dissipation process
and corresponds to an adiabatic plasma transport with
entropy conservation. Dissipation is always associated
with irreversibility of motion and entropy growth. So-
called viscosity process or internal friction, described
with nondiagonal elements of temperature tensor occurs
only when the substance motion proceeds along the flow
lines with different velocities. In this case there are mov-
ing of the flow parts relative to each other and inter-
change energy of the directed motion by heat migration
of beam particles [7]. In other words, viscosity takes ef-
fect of the transfer of the directed motion energy from
place with higher flow velocity to that with lower one and
dissipation of the energy into beam heat, i.e., increasing
particle speed spread. Handling of the collisionless dissi-
pation requires the equation  for nondiagonal terms of
temperature tensor,
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to be included in the model. The equation analysis shows
that heating of the beam due to internal friction near the
axis decreases with increasing speed of particles and is
negligible in the quasi-parallel beams of low temperature.
In particular, a K-V beam conserves transverse emittance
in linear fields as long as all beam particles have the same
longitudinal velocity. Otherwise, a change in beam pa-
rameter results in growth of transverse phase ellipse
thickness. The same fundamental process can be de-
scribed as the Arnold diffusion [3,8]. The two last terms
of Eq.(3) determines the process speed.

The entropy conservation requires in addition to
low viscosity some conditions for eliminating the heat
flow. These conditions are associated with a certain
symmetry in the distribution function or, more precisely,

with zero third moment [4,6]. From this viewpoint the
approximation used consists in replacing actual speed
distribution by a symmetric one.

On the other hand, it is known  that entropy
growth in adiabatic flows can result from irreversible
losses of the directed motion energy, when the losses are
accompanied by forming surfaces of discontinuity (jump)
in temperature, pressure or density. Such a surface with
moment flow through it is usually referred as a shock
wave [5,7]. Obviously, shock wave forming is followed
by the fold with typical for it asymmetry in distribution
function about local average velocity. For this reason and
requirement to conserve a certain ratio between solution
to the first approximation envelope equation (1) and its
perturbation c , application of the model   is limited
within the range R ³ 3c .

Forced elimination of the fold is made difficult
by multivaluedness of the flow line phase curve, then by
necessity for selected action on the group of particles
located at the same point of the configuration space. In
the absence of electric field an asymptotical straightening
of the fold is possible always and associated with beam
cooling on expanding, i.e., transformation of the particle
heat energy into the work of pressure forces.

  REFERENCES

[1] M.Reiser //J.Appl.Phys. 70(4), 1919 (1991)
[2] Y.Batygin // Phys.Rev. E. 53(5), 5358 (1996)
[3] J-M.Lagniel // EPAC’96, p.163
[4] J.E.Carroll //J.Electr. and Control.,14(4),1963, p.403
[5] O.A.Anderson // Part. Accel., 21 (3-4), 197 (1987)
[6] I.Hofmann //Adv. Electron. and Electron Physics,
      Suppl.13C (1983), Part C, p.49
[7] L.Landau,E.Lifshitz, Hydrodynamics (Moscow,1986)
[8] G.M.Zaslavskij, B.V.Chirikov
     //Adv.Soviet.Phys. 105(1), 3 (1971)
[9] Yu. Zuev // Proc. 4th Int. Workshop on Beam
      Dynamics  and Optimization BDO-97, Dubna, 1997
     (to be published ).
[10] Yu. Zuev //5th Int. Workshop BDO-98,
    S.Petersburg, June 28 - July 3,1998  (to be presented ).

Fig.2

t1 t t2 1> t t3 2>

1144


