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Abstract

A 4D quadratic map can be used to represent the transfer
map of a FODO cell with a sextupolar nonlinearity in the
kick approximation. This map describes the transverse be-
tatronic motion of a charged particle in a circular accelera-
tor. The dynamic aperture of such a mapping is analysed,
i.e. the domain in phase space where stable motion occurs,
as a function of the linear tunes. Starting from the study
of the stability properties of the fixed points of low period
(one or two), it is shown that the dynamic aperture is re-
lated to the invariant manifolds emanating from unstable
points. This represents a generalisation of a similar result
obtained for generic two-dimensional symplectic maps.

1 INTRODUCTION

The evaluation of the dynamic aperture (DA), which is the
volume in phase space where stable motion occurs, of four-
dimensional dynamical systems, is based on CPU-time in-
tense simulations which do produce numerical informa-
tion, but cannot provide a deep insight into the phenomena
which determine the DA.

In this paper, a new method to estimate the stability do-
main of a four-dimensional system is presented. It is based
on the properties of low-order unstable fixed points and it is
a generalisation of a technique successfully applied to two-
dimensional Hamiltonian systems [1, 2, 3]. The method is
based on the construction of the invariant manifolds ema-
nating from the unstable fixed points (such manifolds are
equivalent to the separatrices for continuous-time Hamilto-
nian systems) of low period. Thanks to the phenomenon
of homoclinic/heteroclinic intersections, these manifolds
form a dense network in phase space which extends from
the outer, unstable part of phase space to the DA. Hence
from the knowledge of the unstable fixed points and the
invariant manifolds it is possible to deduce the stability do-
main of the dynamical system.

In the paper a proof-of-principle of this method is pre-
sented using a 4D quadratic map, the generalisation of the
well-known 2D area-preserving H´enon map. The model is
analysed and its DA is evaluated using the standard numeri-
cal methods [4]. Using a simplified technique, the invariant
manifolds are numerically constructed and it is shown how
the DA can be deduced.

2 THE MODEL

The starting point of the analysis is the transfer mapM
of a FODO cell with a sextupole magnet represented by a
sextupolar kick. In case of absence of linear coupling, the

linear partL of the transfer function can be written as a
block diagonal matrix
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while the nonlinear kick can be expressed as a polynomial
function of degree two, namely
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whereK2 is the integrated sextupolar gradient, given by
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The global transfer map is given by the composition ofL
and the kick0
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Eq. (3) can be cast in a different form by means of the stan-
dard transformation to normalised coordinates (Courant-
Snyder variables), together with a rescaling of the physical
variables by the quantity�3=2
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In the previous equation,R(!1; !2) is a 4D block diago-
nal matrix representing a 2D rotation in each phase space
plane by an angle!i = 2��i, while the dimensionless pa-
rameter� represents the ratio of the vertical to the horizon-
tal �-functions at the centre of the sextupole. The trans-
fer function (4) is a symplectic quadratic polynomial map
H and it represents the natural generalisation of the well-
known 2D Hénon map [5]. It has two remarkable proper-
ties:
P1: In the limit � ! 0 the two phase planes(x; x0) and
(y; y0) are decoupled. In fact, under this condition, the map
reduces to a 2D H´enon map in the(x; x0) plane and a linear
rotation in the(y; y0) plane;
P2: the plane(x; x0) is invariant under the action of the 4D
map (4).
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3 FIXED POINTS

A fixed point of a 4D mapG is a root of the polynomial
equation

G(x) = x; x 2 R4 : (5)

The stability properties of the solutions of Eq. (5), which
is actually a system of four nonlinear coupled equations,
derive from the linearisationGL of the mapG around the
fixed point. More precisely, the eigenvalues ofGL deter-
mine whether the fixed point is unstable (also called hyper-
bolic) or stable (also called elliptic). The classification of
the fixed points is similar to the one used for the 2D maps,
although the number of possible cases is bigger.

Furthermore, it is possible to define higher-order fixed
points (also called cycles or periodic orbits) by replacingG

in Eq. (5) with the nth power of the polynomial map

Gn(x) = x; x 2 R4 : (6)

As far as the fixed points of the mapH with n = 1; 2 are
concerned, it is possible to show the following results [6]
R1: Four fixed points exist. One is the origin(0; 0; 0; 0)
and the others are
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By definition, the origin is always stable. The second fixed
pointx2D is real for all the values of the linear tunes!1; !2.
It coincides with the unique hyperbolic fixed point of the
2D Hénon map [5]: this is a consequence of the property
P2. In the (x; x0) plane this fixed point is always hyper-
bolic, while in the(y; y0) its stability type changes from
elliptic to hyperbolic, according to the value of the linear
tunes.

The third and fourth fixed points are real provided the
following condition is satisfied
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They have the same stability type which varies as a function
of the linear tunes and�;
R2: No real fixed point of period two exists for the 4D
Hénon map.

4 INVARIANT MANIFOLDS

For a hyperbolic fixed pointxhyp of a 4D map, the eigen-
vectors of the linearisation of the mapGL aroundxhyp de-
fine two 2D planes in the 4D phase space, where the motion

induced by the linearised map has an expanding or a con-
tracting behaviour.

We can extend these sets to the original non-linear map
G, i.e. it is possible to define two manifolds emanating from
the unstable fixed point, calledWu(xhyp) andWs(xhyp),
having the same expanding (superscript u) or contracting
(superscript s) behaviour. The eigenvectors ofGL are tan-
gential toWu;s(xhyp) at the fixed point.

The invariant manifolds have at least the hyperbolic fixed
point as intersection. An additional intersection,xhom,
is either called homoclinic or heteroclinic depending on
whether the two intersecting manifolds emanate from the
same hyperbolic fixed point. Provided the two manifolds
are non-tangential at the pointxhom, they will oscillate
around each other generating a 2D object which fills most
of the phase space of the system (at least the unstable part
of the phase space).

It is not a trivial task to numerically construct such a
manifold. The problem has been completely solved for 1D
invariant manifolds and efficient algorithms have been de-
veloped. However, in this case even the straightforward
method, based on the iteration of a set of initial conditions
chosen on the eigenvectors of the linearised map, provides
excellent results [1, 2, 3].

The straightforward generalisation of the previous
method to the 4D case, could lead to some problems as
the different expansion/contraction rates could stretch one
direction more than the others, thus collapsing the recon-
structed invariant manifold to an-almost-1D object. Re-
cently, some new methods have been proposed to pro-
vide an accurate reconstruction of the 2D invariant mani-
folds [7, 8].

For the proof-of-principleof the method presented in this
paper, the invariant manifolds have been constructed by
simply computing the evolution of a set of initial conditions
distributed in a 4D neighbourhood of the unstable fixed
point of the Hénon map: those initial conditions which do
not belong to the invariant manifolds are lost due to the hy-
perbolic dynamics, while the others allow the reconstruc-
tion the manifold.

5 SIMULATION RESULTS

The starting point of this study is the numerical evaluation
of the DA of the 4D Hénon map as a function of the lin-
ear tunes�1; �2 and the parameter�. The stability domain
D(N) in the transverse four-dimensional phase space is
given by the volume containing all the initial conditions
that are stable at least forN turns. It has been shown [4]
thatD(N) can be computed by iterating a set of initial con-
ditions(x; 0; y; 0) with

x = r cos �; y = r sin �; r 2 [0; R]; � 2 [0; �=4[

using the following formula

D(N) =

 Z �=2

0

[r(�;N)]4 sin 2�d�

!1=4

(8)
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wherer(�;N) is the average amplitude along the last sta-
ble orbit for a given� [4]. In Fig. 5 the stability domain is
shown for the H´enon map computed usingN = 1000 and
� = 1 as a function of the linear tunes. One can clearly

Figure 1: Dynamic apertureD(N) for the 4D Hénon map
as a function of the linear tunes�1; �2 for N = 1000 and
� = 1.

see the unstable resonances (third order), where the motion
is totally unstable and the DA is zero. Other resonances
are also visible, but they have a smaller impact on the DA.
In Fig. 5 the DA forN = 1000 and� = 0:1 is shown.
The scenario is rather different now: most of the harmful

Figure 2: Dynamic apertureD(N) for the 4D Hénon map
as a function of the linear tunes�1; �2 for N = 1000 and
� = 0:1.

resonances have disappeared andD(N) shows only two
vertical and two diagonal third order resonances. Further-
more,D(N) show almost no sensitivity to!2: this is a

consequence of the propertyP2 as in this case the nonlin-
ear coupling between the two planes is weaker.

Finally Fig. 5 shows the minimum distance of the unsta-
ble invariant manifold emanating from the fixed pointx2D

from the origin (� = 0:1). According to the assumptions
made, the invariant manifolds should surround the region
where stable motion occurs. Hence, the minimum distance
of the manifold from the origin should give an estimate of
the DA. In Fig. 5 one clearly detects some features similar

Figure 3: Minimum distance from the origin ofWu(x2D)
as a function of the linear tunes�1; �2 for � = 0:1. The
initial conditions are iterated1000 times.

to those shown by the DA, namely the unstable third order
resonance (vertical lines) and also a trace of the coupled
third order resonance (diagonal lines).

6 CONCLUSIONS

The numerical simulations showed that the invariant man-
ifolds allow to reproduce the main features of the dynamic
aperture. Although the numerical values of the DA and the
minimum distance of the invariant manifolds agree within
30-40 %, we are confident that this can be improved by us-
ing more sophisticated methods to reconstruct the invariant
manifolds.
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