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Abstract linear part( of the transfer function can be written as a

A 4D quadratic map can be used to represent the transRaIPCk diagonal matrix

map of a FODO cell with a sextupolar nonlinearity in the M, 0
kick approximation. This map describes the transverse be- L= < 0 /\/ly) )
tatronic motion of a charged particle in a circular accelera-

tor. The dynamic aperture of such a mapping is analysedhile the nonlinear kick can be expressed as a polynomial
i.e. the domain in phase space where stable motion occufignction of degree two, namely

as a function of the linear tunes. Starting from the study

of the stability properties of the fixed points of low period I = 2o

(one or two), it is shown that the dynamic aperture is re- T = x)+ Ko(xd —yd)

lated to the invariant manifolds emanating from unstable o= Yo

points. This represents a generalisation of a similar result P 9k

obtained for generic two-dimensional symplectic maps. h Yo 2%oYo;

(1)

wherek’, is the integrated sextupolar gradient, given by
1 INTRODUCTION

1 &°B
The evaluation of the dynamic aperture (DA), which is the Ko = /L Bopo axzy
volume in phase space where stable motion occurs, of four-
dimensional dynamical systems, is based on CPU-time ifithe global transfer map is given by the compositionCof
tense simulations which do produce numerical informaand the kick
tion, but cannot provide a deep insight into the phenomena
which determine the DA. o , 0o,

In this paper, a new method to estimate the stability do- | “* | = (M’” 0 ) wo + K2 (25 — 40) )

main of a four-dimensional system is presented. Itis based | ¥! 0 M, , U (3)
on the properties of low-order unstable fixed points and itis ~ \Y1 Yo — 2K2 Zo yo

a'gener'alisation qf a te;chnique successfully applied to Weq, (3) can be cast in a different form by means of the stan-
dimensional Hamiltonian systems [1, 2, 3]. The method igarq transformation to normalised coordinates (Courant-

based on the construction of the invariant manifolds emapyder variables), together with a rescaling of the physical
nating from the unstable fixed points (such manifolds are-riables by the quantit@3/21C2

equivalent to the separatrices for continuous-time Hamilto- ‘

ds. )

(0,0;s)

nian systems) of low period. Thanks to the phenomenon Z1 Zo

of homoclinic/heteroclinic intersections, these manifolds | R zh + (22 — Byd)

form a dense network in phase space which extends from yi | (Wi, w2) Yo G
the outer, unstable part of phase space to the DA. Hence v, Yo + 2820 Yo

from the knowledge of the unstable fixed points and the
invariant manifolds it is possible to deduce the stability doln the previous equationz (w;,w-) is a 4D block diago-
main of the dynamical system. nal matrix representing a 2D rotation in each phase space
In the paper a proof-of-principle of this method is prePlane by an angle; = 2rv;, while the dimensionless pa-
sented using a 4D quadratic map, the generalisation of th@meters represents the ratio of the vertical to the horizon-
well-known 2D area-preservingdtion map. The model is tal B-functions at the centre of the sextupole. The trans-
analysed and its DA is evaluated using the standard numelgr function (4) is a symplectic quadratic polynomial map
cal methods [4]. Using a simplified technique, the invariant! and it represents the natural generalisation of the well-
manifolds are numerically constructed and it is shown hofnown 2D Hnon map [5]. It has two remarkable proper-

the DA can be deduced. ties:
P1: In the limit 3 — 0 the two phase plangs;, z') and
2 THE MODEL (y,y") are decoupled. In fact, under this condition, the map

reduces to a 2D efion map in théz, 2') plane and a linear
The starting point of the analysis is the transfer refp rotation in the(y, y') plane;
of a FODO cell with a sextupole magnet represented byR2: the plangx, z') is invariant under the action of the 4D
sextupolar kick. In case of absence of linear coupling, theap (4).
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3 FIXED POINTS induced by the linearised map has an expanding or a con-
tracting behaviour.

We can extend these sets to the original non-linear map
G, i.e. itis possible to define two manifolds emanating from
G(x) = x, x e R*. (5) the unstable fixed point, call&d" (xpnyp) andW®(Xnyyp),

having the same expanding (superscript u) or contracting

The stability properties of the solutions of Eq. (5), WhiCh(superscript s) behaviour. The eigenvectorgpfare tan-
is actually a system of four nonlinear coupled equation%emiw oW (Xnyp) at the fixed point
yp '

derive from the linearisatiogy, of the mapg around the ™ ¢ jnyariant manifolds have at least the hyperbolic fixed
fixed point. More precisely, the eigenvalues@f deter-  ins 45 intersection. An additional intersection,om,
mine whether the fixed pointis unstable (also called hype[g gjther called homoclinic or heteroclinic depending on
bolic) or stable (also called elliptic). The classification of, hather the two intersecting manifolds emanate from the
the fixed points is similar to the one used for the 2D mapg, me hyperbolic fixed point. Provided the two manifolds
although the number of possible cases is bigger. _are non-tangential at the poithom, they will oscillate
Furthermore, it is possible to define higher-order fixed,.;nq each other generating a 2D object which fills most

points (also called cycles or periodic orbits) by repla@ing ot the phase space of the system (at least the unstable part
in Eq. (5) with the mh power of the polynomial map of the phase space).

G"(x) = x, x € RL. (6) It is not a trivial task to numerically construct such a

] ) ) manifold. The problem has been completely solved for 1D
As far as the fixed points of the map with » = 1,2 are nyariant manifolds and efficient algorithms have been de-
concerned, it is possible to show the following results [6] ye|oped. However, in this case even the straightforward
R1: Four fixed points exist. One is the origif,0,0,0)  method, based on the iteration of a set of initial conditions

A fixed point of a 4D mayg is a root of the polynomial
equation

and the others are chosen on the eigenvectors of the linearised map, provides
w1 , w1 excellent results [1, 2, 3].
Top = 2 tan 2 Tap = —@2p tan 2 The straightforward generalisation of the previous
yop =0 yhp =0 method to the 4D case, could lead to some problems as
the different expansion/contraction rates could stretch one
and direction more than the others, thus collapsing the recon-
1 wa o w1 structed invariant manifold to an-almost-1D object. Re-
ry = ——tan — ry = —r4 tan —
8 2 2 cently, some new methods have been proposed to pro-
171 ) W 9 Wi e 1/2 vide an accurate reconstruction of the 2D invariant mani-
Yi = :EB ﬁtan > + @taHTtanT folds [7, 8].
o For the proof-of-principle of the method presented in this
Y. = —y4 tan > paper, the invariant manifolds have been constructed by

o - ~simply computing the evolution of a set of initial conditions
By definition, the origin is always stable. The second fixedjstributed in a 4D neighbourhood of the unstable fixed
pointxep IS regl forall thg values of the. Imgar tunes w2.  point of the HENon map: those initial conditions which do
It coincides with the unique hyperbolic fixed point of thepqt pelong to the invariant manifolds are lost due to the hy-

2D Henon map [5]: this is a consequence of the properiyerpolic dynamics, while the others allow the reconstruc-
P2. In the(z,2') plane this fixed point is always hyper- tjon the manifold.

bolic, while in the(y,y') its stability type changes from
elliptic to hyperbolic, according to the value of the linear 5 SIMULATION RESULTS
tunes.

The third and fourth fixed points are real provided th&he starting point of this study is the numerical evaluation
following condition is satisfied of the DA of the 4D Hnon map as a function of the lin-
1 ) W Wi ws ear tunes , v, and the parametet. The stability domain
@tan 5 2 tan 5 tan 5 > 0. (7)  D(N) in the transverse four-dimensional phase space is

given by the volume containing all the initial conditions

They have the same stability type which varies as a functiqat are stable at least fo¥ turns. It has been shown [4]

of the linear tunes ang; thatD (V) can be computed by iterating a set of initial con-
R2: No real fixed point of period two exists for the 4D djtions(z, 0, y, 0) with
Hénon map.

x=rcosf, y=rsingd, rel0,R], 6€[0,n/4
4 INVARIANT MANIFOLDS

For a hyperbolic fixed pointyy, of a 4D map, the eigen-

. 1/4
vectors of the linearisation of the mgp aroundxy,, de- D(N) = / /2[F(0_ N)J* sin 2649 ®)
fine two 2D planesin the 4D phase space, where the motion 0 ’

using the following formula
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wherer(6; N) is the average amplitude along the last staconsequence of the propeR as in this case the nonlin-
ble orbit for a giverd [4]. In Fig. 5 the stability domain is ear coupling between the two planes is weaker.

shown for the hon map computed using = 1000 and Finally Fig. 5 shows the minimum distance of the unsta-
B = 1 as a function of the linear tunes. One can clearlple invariant manifold emanating from the fixed paint

from the origin 3 = 0.1). According to the assumptions
1

N made, the invariant manifolds should surround the region
where stable motion occurs. Hence, the minimum distance
0.8 of the manifold from the origin should give an estimate of
’ the DA. In Fig. 5 one clearly detects some features similar
0.6
0.4
0.2

Yy

Figure 1: Dynamic aperturB(N) for the 4D HEnon map
as a function of the linear tunes, v, for N = 1000 and

B=1.

Yy

see the unstable resonances (third order), where the motiigure 3: Minimum distance from the origin V" (x2p)
is totally unstable and the DA is zero. Other resonancess a function of the linear tunes,v» for 3 = 0.1. The
are also visible, but they have a smaller impact on the DAnitial conditions are iterateti000 times.

In Fig. 5 the DA forN = 1000 and3 = 0.1 is shown.

The scenario is rather different now: most of the harmful ,
to those shown by the DA, namely the unstable third order

resonance (vertical lines) and also a trace of the coupled
third order resonance (diagonal lines).

1

Vy

0.8

6 CONCLUSIONS
The numerical simulations showed that the invariant man-
ifolds allow to reproduce the main features of the dynamic
aperture. Although the numerical values of the DA and the
minimum distance of the invariant manifolds agree within
30-40 %, we are confident that this can be improved by us-

ing more sophisticated methods to reconstruct the invariant
manifolds.
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Yy

resonances have disappeared &ndV) shows only two g
vertical and two diagonal third order resonances. FurtherL ]
more, D(N) show almost no sensitivity ta,: this is a
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