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Abstract . L .
The modified definition of coef allows the effective

The paper describes aattemptmade atthe ESRF to integrated strength to have the same expression in the two
calibrate the main storage rirquadrupoleghrough the models. Asdifferent ways of distributing theintegrated
response matrix fitting. Thedeveloped procedure agell strength intok and L may influence thedegree of
as the outcomeare presentedilong with featuresthat subsequent optics fitting, some comparisons are made.

turned out to be noteworthy. 3 RESPONSE MATRIX FEITTING
1 INTRODUCTION

The best knowledge of quadrupolecalibration is
essential in exploiting the fullperformance of the  Whatis performed is simply the least square fit of
challenging optics of the new generation light sources. A
calibration using the orbit response matniad previously M Ny W) ()2
brought about a significant improvement in the optics F= 2 _Z _Z (A - F‘1j ] (3.1)
modelling [1]. A moredirect way of determining the u=h, vi=l j=1
effective quadrupolstrengthsandthereforethe optics has
recently been attempted via a leasjuarefit of the where
measuredresponsematrix! Three features haveeen _
additionally taken into account. 1) To fit theeasured =~ M: Numberof BPMS, Ny Number of steerers in plang
displacement and deduce simultaneously the steerer i+ »Aij* - Measured and fitted response matrices,
calibration. 2) To remove the dispersive comporferh
the measureddisplacement. 3) Taacquire the response
matrix and operate the machine overveide range of
quadrupole currents to study the global behaviour [3].

3.1 Least Square Fit

by varying the strength of all existingjuadrupole
families. In the ESRF machine, there are eigledrupole
families,M = 224 and\}, = N,, = 96. There are asnany

as 224x 96 = 21,504 matrix elementsiowever, since
2 CALIBRATION MODEL our goal is tpcalibratgthg guadrupoles byfamilies, and
since thedesignedoptics in all casespossess a 1old

There aretwo basic sets of ingredientst, {G} poisson symmetry, we shalaverageover every 16elements of

and {l, (Gl)} meas (G = dB4/dx). For a givengquadrupole Rij (U) that are ideally identical.
current I, its correspondingdefault strength kg and

magnetic lengtlhg are given by [1], 3.2 Steerer Calibration

The measured response matril@q:@)’s actually depend

kg = (C;ﬂ, Lp = % (2.1) on the steerer calibration since,
o int
- (U) = it - - (U . dl:
whereint signifies interpolated Our goal is tofind the R'J( ) = duij / dgj = dU'l( )/((‘1' dij) (3-2)
effectivestrengthk, or equivalentlycoefdefined by
where
. k_ Bo _ Bp
coef = E = kD(GT = ko D(GT (2.2) dUj : Displacement measurediah BPM,
int int dg : Kick angle given td-th steerer,
dlj : Current increment,
One could aswell define the magnetic lengthL to Cj . Steerer calibration coefficient.

experience the same degree of change as the field:
Even thoughdUjj could be measuredith high accuracy,
«/ﬁ _ L _ L L Bint (2.3) the samedegree ofaccuracymay not be kept foRjj (u)
unless there is a good knowledgecpf We shalltherefore
work with the originaldisplacementiUjj and attempt to
determinethe plausiblecj by including into the fitting
algorithm, a step to minimise the function

Lo (Gint

* After this work had been completed, w@meacross a work
made in a similar spirit [2].
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expect, the response matrix fitting #®und to be

M
— 2
Fj(u) = _Zl(Aii ) [ejdlj - dujj) 3:3) particularly sensitive to the tunes of the optics.

0.020

whenever anew set ofAjj(!), namely, a new optics is p T
computed. The above condition leads to . X L8 o™
© 1‘( dc'/c'ZrmsV
o )
M T T
> A U o)
— i=1 15 n
= W~ (3.4) © E}‘--...
dl] Dz A” (U)Z 0.0054——# ‘ -_.'..
i=1 e -'Il."‘-..'
°-°°°'_'1‘:_“‘:".";5\“:““\‘““‘3%
3.3 Path Length Effect Number of Iterations

. . ) ) Fig. 1: Simulation of response matrix fitting.
A kick dg of j-th steerer awvhich there is anon-zero

horizontal dispersiolj creates a path lengtteformation 4 ACTUAL RESULTS
of the closed orbit byl = -Dj-d§j, shifting therefore the
energy by 4.1 Choice of the Optics and the Response
Matrix Measurements.
dp _ _ Djd6 3.5
? - ale (3-5) To cover a wide range ithe quadrupolesettings, the

standardoptics at adifferent energy asvell as an exotic
Here, L, is the machineircumference and denotes the low a optics were included.Orbit displacementswere
momentum compaction. This means ttij contains an chosen to stay within thknear range: rmsH ~ 0.3 mm
extra dispersive term besides the part we are interested iﬁpdrmsv~ 0.2 mm.

4.2 Characteristics of the Performed Response

DiDj 6. 3.6) Matrix Fittings.

al;

dUij = Rij(u) ﬂi@j -
The converged solutions mostly reproduced the
We shall utilise themeasureddispersion (Dj)meas tO measured matrices down to a few percent, always resulting

subtract off theunwantedterm. A precisea value is not in_ hetter fits vertically. In terms ofdisplacement,

needecheresince one may fiand extract the dispersive YPically ~7um horizontallyand ~2um vertically. With
part by minimising the low a optics that has a large horizontal dispersion,

the path lengtltorrection turneaut to be significant to
W M > get a good convergence(Fig. 2). There was an
Fi =2 [dUij = (Di) meas E‘BJ] ' 3.7) improvement of a factor of five in the fifter removal of

i=1 the dispersive contribution. The effect was however
which defines the corresponding energy deviationnegllglble in the remaining cases.
parameter
o 1.50e-41 W alpha optic:
" g
z dUij ADj ) meas % ] o I ]
- izl S 1o0e- = |
5] - | N ) ) (38) Eg 1.00e-4
Z (Di ) meas §§
i=1 32 50005 1 =
°2
3.3 Simulation o
= oo a1 A

1 2 3 4 5 6

What wasdescribedabove has been implementado Steerer Number
the computecodeCATS [4]. An example oBimulation  Fig. 2: The obtained energy deviation parameters.
is shown that confirms theffectivenesgFig. 1). In the ) )
example, the quadrupoles are randoryied tolessthan  4-3 Steerer Calibration.

1%, the steerer coefficients byt20%, with which @  1hg regponse matrix fiquasi uniquelydetermined the
response matrix is generated. The fitting is therformed 5jibration coefficients;’s. The results reveal a saturation

on this matrix starting from a certain point. One sees thgte effect of the steererfield, giving variations up to
all are converging in the right directions. As one may
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~15% (horizontal) and ~5% (vertical), as a function of the

sextupole current in theombinedfunction magnetgFig.
3).
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Fig. 3: Steerer calibration versus sextupole current.

4.4 Obtained Quadrupole Coefficients.

Thanks to the corrections efeerercalibrationsand the
path length thatontributednon-negligibly, thenecessary
accuracy of <1® level wasreached inidentifying the
quadrupolecoefficients. Plotting the best fitcoefficients
versus current, one notices a glolr@nd that effective
gquadrupolestrengthweakenswith the increasing current,
which may arise from proximiteffects in the magnet
assembly (Fig. 4).
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Fig. 4: Quadrupole coefficients versus current.
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4.5 Comparison of the Two Different
Calibration Models.

The results of the fits in thmodified calibrationmodel
turned out to benearly identical tothe original model

(Fig. 5). Thefact signifies that what counts in the fit is

the effective integratedstrength. Theindependenfitting

made in parallel also assures the correctness of tHél

obtained results.

5 CONCLUSION
To obtain anaccuratecalibration of the storage ring

gquadrupolesthe fitting of the orbit response matrix was

attempted by varying the strength of the eighé&drupole
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Fig. 5: Quadrupole coefficients for the two models.
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concern, averaging is made over the matrix elements prior
to the fit to remove the imperfections. Theteerer
calibration turned out to be quasi uniqudbtermined in
course of the response matriit. The steerers being
combinedwith sextupoles in the ESRF machine, the
results revealed a certailependence ahe dipolefield on

the sextupole current. The path lengffect wasfound to

be significant with optics thabave large horizontal
dispersions.

Thanks to the two significant corrections above, the
response matrix fitting provided precision on the
quadrupolecalibrationdown to the necessary 18 level.
The coefficientsaveragedover the best fitspredict the
phase advance per unit cell in almost any optiaded on
the machine up nearly to omlegreeaccuracyeven in the
horizontal plane.
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families. As any existing asymmetry is out of the present
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