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Abstract

Particle colliders with polarized beams require
careful control of spin depolarization. During
acceleration spin is subjected to intrinsic and
imperfection resonances resulting in depolarization.
Extra source of depolarization is beam-beam collisions.
Due to beam-beam interaction, particle motion become
essentially nonlinear and under some circumstances
unstable. In present paper effect of beam-beam collision
on spin depolarization in a proton- proton collider is
studied. Performed study indicates, that spin
depolarization due to beam-beam collisions is suppressed
if beam-beam interaction is stable and if operation point
is far enough from spin resonances. Meanwhile, under
beam-beam instability, spin is a subject of strong
depolarization. Analytical estimations are confirmed by
results of computer simulations.

1 PARTICLE BETATRON MOTION

Let us consider a collider ring with two installed
Siberian Snakes. We use a two-dimensional particle
model in phase space (x, px), (y, py), where x and y are
particle positions, px = βx

* (dx/dz) and py = βy
* (dy/dz)) are

particle momentum, βx
*  = R /Qx

 and βy
*  = R /Qy

 are
average values of beta-functions of the ring, R is a ring
radius, Qx and Qy are betatron tunes. Particle motion
between subsequent collisions combines linear matrix
with betatron angles θx = 2πQx, θy = 2πQy, perturbed
by beam-beam interaction:
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Beam-beam kicks ∆px
n,  ∆py

n are expressed as a result
of interaction of particles with opposite beam with
Gaussian distribution function

  ∆px
n =  4πξxn  

1 - exp[- rn2/(2σn
2)]

[rn
2 /(2σn

2)]
 ,                (2)

and similar for ∆py
n. Parameter ξ is a beam-beam

parameter, which characterizes the strength of
interaction:

ξ = N ro β 
*

4π σ2 γ
  ,                                 (3)

where N is a number of particles per bunch,
ro = q2/(4πεomc2) is a classical particle radius, σ is a
transverse standard deviation of the opposite beam size
and γ is a particle energy.

2 SPIN MATRIX

Rotation of spin S = (Sx, Sy, Sz) in a ring is
calculated as a product of spin matrixes in a lattice arc, in
Siberian Snakes and in the interaction region. Matrix of
spin advance in an lattice arc is described as a matrix of
spin rotation in dipole magnet with bending angle υ:

Dυ =  

 cos (ωδz)         0         - sin (ωδz) 

  0                1                  0 
 sin (ωδz)       0         cos (ωδz)

 ,         (4)

where ωδz = (1+Gγ)υ and G = 1.79285 is the anomalous
magnetic moment of the proton. Matrixes of Siberian
Snakes are given by

S1
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 0        0       1 

 0      -1        0 

 1       0        0 

,      S2 = 

 0        0       -1 

  0       -1        0 

 -1        0        0 

  .  (5)

Spin advance after crossing the interaction point is
described as follow [1] :
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Po
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Py

Po

,    C = Pz

Po

,    Po = Px
2 + Py

2 + Pz
2  ,  (7)

a = 1 - cos (Po δz) ,   b = sin (Po δz)  ,                 (8)

Px = 16π G γξ σ2

β* l
  y

r2
  [1 - exp ( - r

2

2σ2
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Py = - 16π G γξ σ2

β* l
  x

r2
  [1 - exp ( - r

2

2σ2
)] ,  Pz = 0,(10)

where δz = l /2  is an interaction distance and l is a bunch
length.
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3  ANALYTICAL TREATMENT OF
SPIN DEPOLARIZATION

Analytical treatment of spin depolarization is
possible with additional approximations. Suppose, the
betatron tunes in x and y directions are equal each other
θx = θy = θ. Consider particle motion far enough from
low order resonances, therefore, particle trajectory can be

expressed as a linear oscillator,. x = r cos(nθ + Ψ),
y = r sin(nθ + Ψ), with perturbed betatron tune
θ =  θ + ∆θ, where Ψ is an initial phase of betatron
particle oscillations and ∆θ is a tune perturbation due to
beam-beam collisions. Under that assumptions, the
following matrix of spin advance has been attained [1]:
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where n is a turn number and ϕ is a small parameter:

ϕ  = 4π G γ ξ  r
β*

  << 2π  .                      (12)

From attained matrix, it follows that spin
depolarization is not taking place or suppressed if
betatron tune values are chosen far away from low-order
resonances, and that beam-beam collisions are stable.
Actually, suppose that the initial spin has only one
transverse component, i.e., Sx = 0, Sy = 1 and Sz = 0.
After n turns, the average and rms values of spin
components are as follows [1]:

Sx = 0,      Sz = 0,    
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8
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4
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]
2
  ,                                            (14)

where ϕ and θ are the average values of parameters ϕ, θ
among all particles. In Fig. 1 results of numerical study of
particle motion and suppressed spin depolarization in the
presence of stable beam-beam interaction are presented
for the values of betatron tunes Qx = Qy =14.43.

4  SPIN DEPOLARIZATION AT BEAM-
BEAM INSTABILITY

There are several mechanisms which lead to particle
instability under beam-beam collisions. Excitation of
nonlinear resonances and unstable stochastic particle
motion due to overlapping of resonance islands are the
fundamental phenomena in beam-beam interaction [2].
Another mechanism of unstable particle motion is a
diffusion created by random fluctuations in distribution of

the opposite beam. In Ref. [3] the noise beam-beam
instability was studied for the case of random fluctuations
in the opposite beam size

σn = σo (1 ±  u·un

2
) ,                        (15)

where u is a noise amplitude and un is an uniform random
function with unit amplitude. It was shown that in the
presence of noise, beam emittance increases with the turn
number n as

εn

εo
   = 1 + D n  .                              (16)

where D is a diffusion coefficient.
In Fig. 2 the results of beam dynamics and spin

depolarization in the presence of noisy beam-beam
instability  are presented. Parameters of the process were
chosen the same as for the stable beam-beam interaction
without noise as presented in Fig. 1. The value of noise
amplitude u = 0.025 was chosen arbitrarily, to
demonstrate the main features of diffusion beam-beam
instability. As is seen, increase of beam sizes due to
beam-beam collisions results in spin depolarization. It is
also expected from analytical formulas (13) - (14), where
the average and rms beam parameters are proportional to
the powers of the small parameter ϕ , which, is
proportional to beam size according to Eq. (12).
Therefore, if beam is subjected to beam-beam instability,
it causes spin depolarization.
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Fig. 1. (a) Beam emittance, (b) average value of Sy,

(c) rms value of ( <Sz
2> )

1/2
 as a function of the

turn number for stable beam-beam interaction.
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Fig. 2. (a) Beam emittance, (b) average value of Sy, (c)

rms value of ( <Sz
2> )

1/2
 as a function of the turn number

for unstable beam-beam interaction.
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