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Abstract

This paper presents some approaches to optimization prob-
lems for beam line design. The matrix formalism for Lie
algebraic tools is put in to these approaches. This allows
to use all advantages of symbolic presentation of desired
knowledge and create effective and flexible optimization
procedures.

1 THE PROPAGATOR FOR BEAM
DYNAMICS

1.1 Introduction

Beam dynamics in beam line systems is usually described
by nonlinear motion equations. The corresponding maps
(the so called time displacement operator or propagator),
generated by these motion equations can be calculated with
the help of the so called Lie algebraic tools (for Hamilto-
nian systems see [1]). In previous papers [2, 3] the main
concepts of the matrix formalism for Lie algebraic tools
are presented. Using this formalism one can build desired
beam line map in a matrix form regardless of beam state
descriptions.

1.2 The Basic Concepts of Matrix Formalism

Further we shall consider differential equations of motion
in the general form

dX

dt
= F (X,U ; t), (1)

whereX(t) ∈ Rn is a phase vector andU(t) ∈ Rr – a
control vector,t is an independent variable (for example,
the length along the referenced trajectory) and the function
F (X,U, t) can be represented as a Taylor expansion

F (X,U ; t) =
∞∑
k=0

P1k(U ; t)X [k], (2)

WhereX [k] is the so called Kronecker power ofk-order for
a phase vectorX,P1k(U ; t) are matrices containing Taylor
expansion coefficients. According to the matrix formalism
[4] solutions of Eqs.(1)–(2) are sought in the form

X(t) = X(X0, U ; t|t0) =
∞∑
k=0

M1k(U ; t|t0)X
[k]
0 , (3)

where X0 = X(t0) is an initial phase vector and
M1k(U ; t|t0) are solution matrices. In the previous pa-
pers ([2, 3, 4, 5, 6]) basic features of this approach were
demonstrated and various examples of applications were
described. Calculation of the matricesM1k are made us-
ing the Lie algebraic methods and the matrix algebra tools
expanded by the Kronecker operators. According to the Lie
algebraic tools we can write solution of the Eqs.(1)–(2) in
the form (t ∈ [t0, t∗]):

X(U ; t) =M(U ; t|t0) ◦X0 = Texp




t∫
t0

LFdτ


 , (4)

whereM is the propagator (Lie transformation), generated
by the vector field (Lie operator)LF , associated with the
function F (U ; t) (LF = F ∗(X, t)∂/∂X). Texp is the
so called T-exponential operator (time ordered exponential
operator). For non–autonomous cases this operator can be
rewritten with the help of the Magnus’s representation [7]
as the routine exponential operator

Texp




t∫
t0

LF dτ


 = exp

{
L̂(F ; t|t0)

}
. (5)

The new operator̂L is associated with a new function
F̂ (F ; t|t0) which can be calculated using the continuous
analogue of the CBH formula. The expansion (2) gener-
ates Taylor expansions of Lie operatorsLF =

∑
k≥0 LFk

andL̂F =
∑
k≥0 LF̂k . HereFk andF̂k are homogeneous

vector polynomial functions, foe exampleFk = P1kX [k].

The sequences of{Fk} and
{
F̂k

}
are determined by the

following matricesP1k(t) and P̂1k(t|t0). Rewrite the
Eqs.(4)–(5) using the analogue of the Dragt–Finn factor-
ization in the form

M(U ; t|t0) = . . . ◦ exp
{
L̃2
}
◦ exp

{
L̃1
}
, (6)

whereL̃k =
(
G1k(U ; t)X [k]

)∗
∂/∂X. For new matrices

G1k(F ; t|t0) we can obtain the rather simple formulae us-
ing the Kronecker product and sum operations. Step by
step applying of the factorized maps (5) onX0 we evaluate
the solution (3). The matricesM1k can be written in closed
forms as functions ofG1k [3].
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1.3 The Additional Features of the Matrix For-
malism

It is known that the above mentioned approach is one of the
perturbation theory methods. The desired solution is cre-
ated in the form of power series (see Eq.(3)). It is clear that
this way can be realized only with truncated procedures for
some chosen order of expansions. In the referred works the
corresponding matricesP1k, P̂1k,G1k andM1k are calcu-
lated up to seventh order in symbolic forms using the com-
puter algebra codes (REDUCE,MAPLE). But we have
to note that for this approach there appear two problems:1)
the support of the accuracy of truncated expansions, 2) the
support of intrinsic properties (for example, symplecticity
for Hamiltonian systems). The second problem is solved
with the help of the correction procedure [3] for the ma-
tricesM1k. For this correction one have to solve a chain
of the linear algebraic equations and redefined some of the
elements ofM1k. These calculations one can make in sym-
bolic forms too and they make matrix elements calculation
more accurately and quickly, because such calculations are
made only once and the results are used as required.

2 THE OPTIMIZATION PROBLEMS

2.1 Formalization Procedures

There are two approaches to the formalization procedure
for optimization problems: the first is based on beam op-
tics properties, such as the focusing distance, the magnifi-
cation (demagnification), linear and nonlinear aberrations
(geometrical, chromatic) and so on; the second is based
on the description of the beam evolution as the evolution
of the phase manifold occupied by some set of particles
M(t|t0) =M(U ; t|t0)◦M0, whereM0 is a starting phase
manifold.

The first approach allows to create mathematical opti-
mal criteria regardless of beam state knowledge. This leads
to nonlinear equations and inequalities which describe the
corresponding properties of the system under study. To
solve these equations and inequalities we use nonlinear
programming methods. The second approach is based on
optimal criteria, which are written in the following gener-
alized form:

J[U ] =

t∗∫
t0

∫

M(τ |t0)

g1(X,U ; τ)dXdτ+

+

∫

M(t∗)|t0)

g2(X,U)dX.

In this presentation of the optimization procedure one can
take into account more subtle effects of beam dynamics.
The usual methods for solution of the corresponding prob-
lems are methods of the optimal control theory. In this
work we use parametric descriptions of the control func-
tions U(t) = U(A, t) ∈ Rr, A ∈ Rm for almost all

t ∈ [t0, t∗], whereA is a parameters vector representing a
class of the used control functionU(t). Some of these pa-
rameters have geometric nature and some of them describe
focusing and deflecting forces in the beam line. Usually
the computer experiments dictate to select a discrete subset
for most geometric parameters in some technological de-
sired set of its variations. The optimization procedure on
this discrete subset is reduced to a tabulation procedure us-
ing an appropriate lattice. This tabulation procedure can be
realized either using a regular multivariate lattice or using
a random lattice. The first variant is suitable for some de-
fined lattice of control parameters. This approach allows
to create databases of valid systems. The second variant is
most often used in the case when there is not any informa-
tion about the starting point in the parameters space. The
both variants are convenient to realize with the appropriate
visualization procedure, which helps to detect those or an-
other singularity. Similar approach was used for high solid
angle mass–spectrometer modeling [8]. As to the control
functions concerning to focusing and deflecting forces the
control theory methods are more preferable. As we men-
tion here above there are two approaches. In the first one
the problem is formulated in the terms of mappings gen-
erated by the system and in the second approach the ob-
ject functionJ[U ] and constraint conditions are written us-
ing phase portrait of the beam. The first approach is often
used in part for the linear approximation model. But using
the computer algebra methods and codes we can compute
the necessary conditions in symbolic form for nonlinear ap-
proximation models too. For this purpose it is more conve-
nient to use the matrix formalism. Indeed in this case one
can include nonlinear effects in the symbolic form, which
allows to find a desired solution more effectively. For ex-
ample, for the problem of nonlinear aberrations correction
the optimal control problem is reduced to solving proce-
dure for the system of linear algebraic equations [9].

2.2 Methods of Solution

Certainly the efficiency of any optimization procedure de-
pends for the most part on the used methods of optimiza-
tion problem solution. In this report we suggest the ap-
proach which is based on the representation of the control
functionU(t) using some set of model control functions
U(A, t), whereA is a parameters vector which describe
the selected model function. As an example let us consider
the gradient of a quadrupole lensg(t), wheret is measured
along a referenced trajectory. Along the system this gradi-
ent function is a continuous function and nonvanishing val-
ues correspond to existing of physical quadrupole (or other
multipole) lenses. But for each specific lens we can approx-
imate this function using some model functionU(A, t). It
is obviously that the selection ofU(A, t) depends on the
experimental data. We can prepare some set of such kind
of model functions in advance (in the form of a database of
approximation functions for the fringe fields) and use them
in optimization procedure. In this case them–dimensional
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vector of parametersA is some part of variable parameters
vector for the corresponding nonlinear programming prob-
lem. To solve this problem we use two direct methods: the
modified method of sliding tolerances [10] and the stochas-
tic method, the so calledLPτ–method [11]. The appropri-
ate combination of these methods allows to solve enough
complicated problems (see, for example, [12]).

3 ORGANIZATION OF CALCULATIONS

The usage of the matrix formalism for Lie algebraic tools
allows us sufficiently to simplify the most problems of find-
ing optimal structure of the beam lines. Let us enumerate
the advantages of this approach:
? the possibility to write the object function and corre-
sponding condition functions using symbolic representa-
tion for nonlinear problems too;
? the effectiveness of all calculations is increased as one
can use symbolic prepared in advance formulae, which are
withdraw from corresponding databases if necessary;
? the cross from one model of the beam line to another is re-
alized in corresponding to the dynamic modeling approach
[13];
? the possibility to form enough simple symbolic formulae
for estimation of efficiency of desired beam line.

These possibilities permit to formulate in the most cases
a nonlinear programming problem (instead of the optimal
control problem) upon a class of control parameters which
can include both some geometrical parameters (describing
the starting manifold or starting distribution function, if it
is necessary) and components of the vectorA (see above).

Certainly that the symbolic presentation for the object
function and the functions generated various bounded con-
ditions (both on phase variables and the control parameters)
permit to simplify the optimization procedure. This allows
in many cases to use personal computers instead of work-
stations. The usage of the data–base management system
and the dynamic modeling paradigm [13] gives a capability
to manipulate by more large structure elements in compar-
ison with the control parameters.
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