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Abstract

Intense nonuniform particle beam exhibits strong
emittance growth and halo formation in linear focusing
channel due to nonlinear space charge forces of the beam
(see Fig. 1). This phenomenon limits beam brightness and
results in particle losses. The problem is connected with
irreversible distortion of phase space volume of the beam
in conventional focusing structures due to filamentation in
phase space. Emittance growth is accompanied with halo
formation in real space which finally results in inevitable
particle losses. New approach for solving a self-consistent
problem for a matched nonuniform beam in two-
dimensional geometry is discussed. Resulting solution is
applied to the problem of beam transport, while avoiding
emittance growth and halo formation by the use of
nonlinear focusing field. Conservation of a beam
distribution function is demonstrated via analytical
derivations and utilizing particle-in-cell simulation for a
beam with a realistic beam distribution.

1  MATCHED BEAM DISTRIBUTION

To prevent emittance growth and halo formation,
beam has to be matched with the channel. Beam

distribution function, f (x, px, y, py), expressed as a
function of Hamiltonian, H, is a constant of motion in a z
- uniform, time-independent focusing channel

f = f (H),  
H = 

px
2  + py
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2 m γ
 + q Uext + q Ub

γ 2
  ,            (1)

where px and py are components of transverse particle
momentum, q and m are charge and mass of the particles,
respectively, γ is a particle energy, Uext is a potential of
focusing field, and Ub is a space charge potential of the
beam. Matched beam distribution function, Eq. (1), obeys
self-consistent set of Vlasov-Poisson equations:
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where U = Uext + Ubγ -2 is a total potential of the
structure. In many cases beam distribution function is
known, for example, from particle source. The problem is,
therefore, to keep given beam distribution function and to

prevent undesirable distortion of phase space volume of
the beam.

2  BEAM EQUILIBRIUM IN
CONTINUOUS  FOCUSING CHANNEL

General method to solve the problem, Eq. (2) is to
substitute the given beam distribution function into
Vlasov's equation and to solve it for unknown total
potential of the structure, U [1]. Required focusing field is
then found as a difference between the total potential and
known space charge potential of the beam
Uext = U - Ubγ -2. The same relationship is valid for

electrical field Eext(r) = E(r) - Eb(r) γ -2.
Consider the following class of beam distribution

functions

f = f (T) ,      T = 
px

2 + py
2

po
2

 + G(x, y) .            (3)

Calculation of derivatives of the distribution function
give:
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Figure 1. Emittance growth and halo formation of 150
keV, 0.1 A, 0.06 π cm mrad proton beam with
truncated at 2.6<x2>  Gaussian distribution in linear
focusing channel.
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Substitution of derivatives, Eq. (4), into Vlasov's
equation, provides relationship for unknown total
potential of the structure:
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Particular solution of the equation (5) can be
obtained, if components of Eq. (5) are equal termwise:
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In this case the total potential of the structure is
proportional to the function G(x,y):

U(x,y) = po
2

2qmγ
 G(x,y)  .                           (7)

Therefore, given beam distribution function uniquely
defines required total potential of the structure.

3  BEAM EQUILIBRIUM WITH
ELLIPTICAL SYMMETRY IN PHASE

SPACE

Let the function G(x,y) in the beam distribution, Eq.
(3), to be a quadratic function of radius, r:

G = x
2 + y2

R2
  ,       r

2 = x2 + y2
 .                  (8)

Equations (3) and (8) define a class of distribution
functions with elliptical symmetry in phase space. Particle
trajectories of the equilibrium beam are given by family
of ellipses:
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2
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Let us introduce normalized beam emittance
ε = R po /(mc). Total potential of the structure for this
class of distributions from Eq. (7) is also quadratic
function of radius

U = mc2
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) .                      (10)

Therefore, total field has to be linear function of radius:

E = - mc2
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)
2
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) .                           (11)

This result has a simple explanation. Particles rotate
in total linear field along elliptical  phase space
trajectories, Eq. (9), and beam distribution with elliptical
symmetry is, therefore, conserved.

Equilibrium of the KV beam

One of the distributions of this type is the KV
distribution [2]
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Distribution, Eq. (12), is projected at configuration space
(x,y) as uniformly populated beam of radius R with space
charge potential

Ub = - I
4πεoβc

 (x
2+ y2)

R2
 ,                   (13)

where I is a beam current and β is a longitudinal particle
velocity. Required focusing field for the KV beam is a
combination of total field, Eq. (10), and space charge
field, Eq. (13):
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 ]  ,              (15)

where Ic = 4πεomc3/q = 3.13·107(A/Z) Amp is
characteristic value of beam current.

The same relationships, Eqs. (14) and (15), follow
directly from KV envelope equation for the axial -
symmetric beam in focusing channel with applied

potential Uext = Gf (r2/2)

d2R
dz2

 + µo
2 R - ε2

(βγ)2 R3
 -  2I

R (βγ)3Ic

  =  0 ,     (16)

where µo is a frequency of particle oscillations in a linear
focusing channel without space charge forces

µo
2 = q Gf

m γ β2c2
 = q

m γ β2c2
 1
r
 dUext

d r
 .             (17)

If the KV beam is in equilibrium with external focusing
field, beam radius R remains constant  and the envelope
equation, Eq. (16) gives the same equilibrium condition
for KV beam, as Eqs. (14) and (15).

Equilibrium of the Gaussian Beam

Let us check, how equilibrium condition is changed
for non-uniform beam distribution with elliptical
symmetry [1]. Consider beam with Gaussian distribution
function

f = fo exp (- 2 
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2 + py
2
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2

 - 2 x
2 + y2
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 )  .           (18)

Space charge field of the Gaussian beam is given by

Eb = I
 2π εo β c  

 1
r
 [ 1 - exp( - 2 r

2

R2
 )]  .      (19)

Equilibrium condition for Gaussian beam is the
combination of the total field, Eq. (11) and space charge
field, Eq. (19):
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Condition to maintain Gaussian beam, Eq. (20), is
different from that of KV beam, Eq. (15). For non-
uniform beam external focusing field has to be nonlinear
function of radius.

4  BEAM EQUILIBRIUM WITHOUT
ELLIPTICAL SYMMETRY IN PHASE

SPACE

Consider another class of particle distribution with
function G(x, y) in Eq. (3) as

G = (x
2 + y2)2

2Ro
4

  .                           (21)

Example of this kind of beam distribution is

f = fo exp ( - 2 
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 ) .     (22)

Phase space trajectories of the equilibrium beam in this
case are not ellipses anymore. According to Eq. (7), total
potential of the structure for this class of particle
distributions  is

U(x,y) = po
2

qmγ
 (x

2 + y2)2

4 Ro
4

  .             (23)

Total field of the structure is

E = - 1
γ

 mc2
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 (ε*
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)
2
 ( r3
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3

) ,                 (24)

where ε*  = Ropo/(mc) is an effective normalized beam
emittance. In contrast with distribution functions with
elliptical symmetry, total field, Eq. (24) is not a linear
function of radius, but is an essentially nonlinear function
of radius  ~ r3.

Space charge density of the beam is attained after
integration of beam distribution function over particle
momentum:

ρ(r) =  
-∞

∞
f dpx dpy 

-∞

∞
 = ρo exp (- r

4
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4

)  .    (25)

Space charge field of the beam is obtained from Poisson's
equation

Eb = 1
εor

 ρ(r') r' dr'
o

r
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  erf (r
2
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2

) .    (26)

Combination of the total field, Eq. (24), and space
charge field, Eq. (26), gives the expression for the
required focusing field of the structure to maintain beam
distribution:

Eext= - 1
γ

 mc2

q Ro
 [(ε*
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)
2
( r3
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3

) + 2I
Ic βγ

 (Ro

r
) erf (r2

Ro
2
)] .   (27)

In Fig. 2 results of numerical study of high-brightness
beam transport with distribution function, Eq.(22), in
focusing field, Eq. (27), are presented. As seen,  beam
remains in equilibrium in contrast with mismatched beam,
presented in Fig. 1.

Important point is stability of beam equilibrium in
nonlinear focusing field. Sufficient condition for stability
is given by Newcomb-Gardner theorem [3], which states,
that monotonically decreasing equilibrium distribution
function of Hamiltonian ∂f/∂H < 0 is stable with respect
to perturbations. Distributions, Eqs. (18) and (22) as well
as most of realistic beam distributions satisfy stability
condition.
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Figure 2. Conservation of 150 keV, 0.5A, 0.07 π cm
mrad proton beam with distribution, Eq. (22), in
nonlinear focusing field, Eq. (27).
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