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Abstract prevent undesirable distortion of phase space volume of

. . o the beam.
Intense nonuniform particle beam exhibits strona

emittance growth and halo formation in linear focusing z=0
channel due to nonlinear space charge forces of the be
(see Fig. 1). This phenomenon limits beam brightness a
results in particle losses. The problem is connected wi
irreversible distortion of phase space volume of the bee

P e

in conventional focusing structures due to filamentation - 2
phase space. Emittance growth is accompanied with hs i
formation in real space which finally results in inevitabl y
particle losses. New approach for solving a self-consiste LB ELLS0 RS T 1522, SALarasg R
problem for a matched nonuniform beam in two et e

dimensional geometry is discussed. Resulting solution 22575 om
applied to the problem of beam transport, while avoidin
emittance growth and halo formation by the use c
nonlinear focusing field. Conservation of a bean
distribution function is demonstrated via analytica
derivations and utilizing particle-in-cell simulation for a
beam with a realistic beam distribution.
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1 MATCHED BEAM DISTRIBUTION

To prevent emittance growth and halo formation Figure 1. Emittance growth and halo formation of 150
beam has to be matched with the channel. Bea keV, 0.1 A, 0.06tcm mrad proton beam with
distribution function,f (X P ¥, B), expressed as a truncated at 2)6<x>> Gaussian distribution in linear
function of Hamiltonian, H, is a constant of motion in a ; focusing channel.

- uniform, time-independent focusing channel

H Pkt p§/ . + aUb 2 BEAM EQUILIBRIUM IN
f=f(H) 2 my G Uex qﬁ (1) CONTINUOUS FOCUSING CHANNEL
wherePx andPy are components of transverse particle General method to solve the problem, Eq. (2) is to
momentum, g and m are charge and mass of the particgét’)stltute the given beam distribution function into
respectivelyy is a particle energiext is a potential of Vlasov's equation and to solve it for unknown total

f ina fiel Ub i h il of hE?otential of the structure, U [1]. Required focusing field is
ocusing field, and-b is a space charge potential of thgnep foung as a difference between the total potential and
beam. Matched beam distribution function, Eg. (1), obe

; , _ Yhown space charge potential of the beam
self-consistent set of Vlasov-Poisson equations: _ 2 . o ,
Uext = U - bY™*. The same relationship is valid for

1 (Of v O pyqdf 90U 4 of 0Uy_ electrical fieldEext(r) = E(r) - By(r) Y2,
my ‘9x aypy dpx Ox  dpy dy functicc:)cr)gSider the following class of beam distribution
| .2
1a(ran):-q’ f (H) dpx dpy
2
For or €0 | o Jco f=f(T), T:pX+2p§+G(X,y). 3)
Po

- 2. .

= + . . . . . . .
where U = Uext + Uby™ is a total potential of the ~qicylation of derivatives of the distribution function
structure. In many cases beam distribution function js ..

known, for example, from particle source. The problem i5,

therefore, to keep given beam distribution function and to of  of 3G of _ of 9G

ox oT ox dy T dy
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(4) Equilibrium of the KV beam

o _ 2ﬁpl of _ 2"f Py i %ng of the distributions of this type is the KV
o0 oT P2 £ = EE istribution [2] " ,
/ f=fod (PR X +2V2 -To). (1)
Subst_itution of_ derivativgsEq.. (4), into Vlasov's Po
equation, provides relationship for unknown totahgyipytion, Eq. (12), is projected at configuration space
potential of the structure: (x.y) as uniformly populated beam of radius R with space
1 0G . ,0G Cog P U , Py 9U —0. (5 charge potential ,
my (ax Px ay Py) q% X p3 ay) ©) Ub=-|7w, (13)

dniefc R?

Particular solution of the equation (5) can beyhere | is a beam current afids a longitudinal particle
obtained, if components of Eq. (5) are equal termwise: velocity. Required focusing field for the KV beam is a
combination of total field, Eq. (10), and space charge

U _ P2 G U _ P2 G field, Eq. (13):

ox  2gqmy ox dy 2qmy dy Uot=ME L (1211 &2+ 1 ] or  (14)

) ) ) 4 YR 2R Bylc

In this case the total potential of the structure is

proportional to the function G(x,y): Eext = .mc2 1 ™) [(Q)Z +2_ 1 1, (15)

P2 RY R R Bylc

Uxy) = - G(xy) . ()

2qmy where lc=4mgmc®q = 3.1316(A12) Amp is

acteristic value of beam current.
The same relationships, Eqgs. (14) and (15), follow
directly from KV envelope equation for the axial -

Therefore, given beam distribution function uniquel)f;har
defines required total potential of the structure.

3 BEAM EQUILIBRIUM WITH symm.etric b_eam 2in focusing channel with applied
ELLIPTICAL SYMMETRY IN PHASE potentialJext = Gt (/2)
SPACE
dRepgr- £ oA =0, (9
Let the function G(x,y) in the b(_eam distribution, Eq. d B R R By
(3), to be a quadratic function of radius, r. whereMo is a frequency of particle oscillations in a linear
G = X2 +2y2 , =2 +y? ®) focusing channel without space charge forces
§ wa=9G - 4 1dUex (17)
Equations (3) and (8) define a class of distribution myp%c2 myp3 2’ dr

functions with elliptical symmetry in phase space. Particle o o ] )

of ellipses: ield, beam radius R remains constant and the envelope
X2 . p? equation, Eqg. (16) gives the same equilibrium condition
RZ + 02 = const. (9) for KV beam, as Egs. (14) and (15).
0

Let us introduce normalized beam emittancEquilibrium of the Gaussian Beam

€ = Rpo /(MC). Total potential of the structure for this o -
class of distributions from Eq. (7) is also quadratic L€t us check, how equilibrium condition is changed

function of radius for non-uniform beam distribution with elliptical
) symmetry [1]. Consider beam with Gaussian distribution
u=mc 1 (&?X°+ YZ)_ (10) function , )
2
ayY R 2R f:foexp(-ZpX+2p§-2X +2y2) : (18)
Therefore, total field has to be linear function of radius: Po R
E= m& 1 (L)Z(L) . (1) Space charge field of the Gaussian beam is given by
aRY R R | 1 5
Ep=— ' +[1- -279] . 19
This result has a simple explanation. Particles rotate b 2riegPc T [1-exp( R2 ) (19)

in total linear field along elliptical phase space

trajectories, Eq. (9), and beam distribution with ellipticaEquilibrium condition for Gaussian beam is the

symmetry is, therefore, conserved. combination of the total field, Eq. (11) and space charge
field, Eq. (19):
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m21r 2 ,4 | (1-exp(2PRY) o0

Eext= - L z=0 ¢ o
qRYR R2 BYle  2(2IR? ,
Condition to maintain Gaussian beam, Eq. (20), i ~_ *] ;
different from that of KV beam, Eq. (15). For non- & ® g1 1]
uniform beam external focusing field has to be nonline¢ = .us
function of radius. Y i E
= I 3
4 BEAM EQU|L|BR|UM WITHOUT AR ELOSG RS L52 LS A5 ALELSO0ES [ 15225
ELLIPTICAL SYMMETRY IN PHASE e e
SPACE 2=20 vm e
Consider another class of particle distribution witt ::::i
function G(x, y) in Eq. (3) as 5 Eonf
2 y2 2 f\. ﬂc.m::- E__“__
G =Y (21) g
2R: oo |
Example of this kind of beam distribution is - “‘xm, e

2 2
f=foexp (-2 % + K (x2+y?) ). (22) Figure 2. Conservation of 150 keV, 0.5A, 018m
p3 RS mrad proton beam with distribution, Eq. (22), in

nonlinear focusing field, Eq. (27).
Phase space trajectories of the equilibrium beam in th

case are not ellipses anymore. According to Eq. (7), total

potential of the structure for this class of particle * 2 3 2
distributions is Eox= - 1 M [(E1)" () + 2 Royerf (). (27)
P2 (2 +y?)? YRy Ro R3 IcBy Ro
Uxy) = B 230 (23)
amy 4R In Fig. 2 results of numerical study of high-brightness
Total field of the structure is beam transport with distribution function, Eq.(22), in
focusing field, Eqg. (27), are presented. As seen, beam
£ 1me (i)z (ﬁ (24) remains in equilibrium in contrast with mismatched beam,
YqRy Ry R3 ' presented in Fig. 1.
(0]

Important point is stability of beam equilibrium in
* _ . . . nonlinear focusing field. Sufficient condition for stability
€ = mc
where RoPo/(MC) is an effective normalized beamis given by Newcomb-Gardner theorem [3], which states,

emittance. In contrast with distribution functions wit ; . P o0
elliptical symmetry, total field, Eq. (24) is not a Iinear;that monotonically decreasing equilibrium distribution

function of radius, but is an essentially nonlinear functioffnction of Hamiltoniardf/0H < Ois stable with respect
f radius ~ 3 to perturbanons._ D_|str|but|ons_, Egs. _(18) and_ (22) as y\_/ell
0 Space éharge density of the beam is attained afls most of realistic beam distributions satisfy stability

integration of beam distribution function over particle dndition.
momentum:
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r
E,=-L1 MNrdr=—1 erfﬁ . (26
b=k ‘ T gor 6 @

Combination of the total field, Eq. (24), and space
charge field, Eq. (26), gives the expression for the
required focusing field of the structure to maintain beam
distribution:
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