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Abstract

This paper presents an analytical description of the
beam dynamics with space charge. The suggested
approach is based on the Lie algebraic methods in the
matrix formalism.  The nonlinear operator differential
equation for the corresponding Lie transformation is
solved using a convergent recurrent procedure. On each
elementary interval the required matrices are calculated in
the symbolic form using computer algebra codes. Such
calculations are made for some models for beam density
distributions. These model distributions can be used for
approximation of real beam distributions. The
corresponding software is compact and flexible.

1  INTRODUCTION
Many approaches to the space charge modeling

problem are known. The basic difficulties which arise
from this problem is a nonlinearity of corresponding
motion equations even for simplest cases. In this paper
some evolution problems of long beams with an elliptical
cross--section in transverse phase space are discussed. As
examples some special forms of phase space distribution
function are described [1]. For these distribution
functions the  Ferrer's integrals technique is used. It
allows to obtain motion equations in symbolic forms as
expansions in series. These equations are written in a
matrix form. The truncated matrix equation (up to a
certain order) are solved with the use of the matrix
formalism for Lie algebraic tools [2]. Nonlinear nature of
these equations leads to a necessity to use the successive
approximations method. Obtained convergence
conditions and algorithms give opportunity to estimate a
current step value in advance and to create necessary
software for modeling. Moreover the suggested approach
allows to use object--oriented ideology and to realize the
dynamic modeling paradigm [3, 4].

2  A SPACE CHARGE DESCRIPTION

2.1 The Initial Space Charge Distributions

The space charge distribution in the phase space is
described with the help of a set of phase-space
distribution functions [1]. Note that in general a phase-
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and bi(k)are the polynomial coefficients of k-th order,
which can be calculated from the known expression
k!/k1!…kn! using the lexicographic order

2.2  The Self-Field of the Space Charge

Using the Ferrers's integrals technique we can calculate
the desired potential for the beam in the form
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local coordinates in which the phase ellipsoid is the
canonical one. After some transformations we obtain the
components of the vector of self-electrical field
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and for our particle density distributions we can write
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The values of ∆Eξ, ∆Eηcan be easily calculated with the
help of REDUCE (or MATHEMATICA) codes. Note that
for the K-V distribution we have ∆Eξ, = ∆Eη =0. Besides,

if the arbitrary distribution )2
1(0),( κρρ Φ=yx  is a

polynomial arbitrary distribution of n-th order with
respect to the variables        the functions and ∆Eξ, and ∆Eη
are polynomials of (2n+1)-th order with respect to the
variables ξ and η. Then we can return to the coordinates
x, y referenced to a desired system.

3  THE MOTION EQUATION

3.1  The Motion Equation for a Single Particle

As an example we consider the transport system with the
rectilinear optical axis (there are no dipole magnets). For
a nonbunched beam (the longitudinal self-electric field is
missing) the motion equation for single particle can be
written in the form
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where, dsdyxT /',2'2'1 =++= . Note that the self-

magnetic field is studied with the help of the coefficient
1/γ3.

These motion equations can be rewritten in the
following matrix form
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The matrices k
extP1  and k

selfP1  describe the external and

self-fields correspondingly. As an example the
corresponding motion equations for a quadrupole lens
system in the presence of space-charge  up to third order
on phase space variables are considered in [1, 6].

3.2 Transfer Map in the Presence of the Space-
Charge

The transfer map approach has been very useful for
studying beam dynamics without space-charge. In this
case we can write

where      is called the transfer map ( or Lie map ) between
moments s0 and s. If the beam is an ensemble of
noninteracting particles then the map                        depend only on

control system parameters. In the frame of the matrix
formalism [2] we can represent this map in the form

where M 1 k are matrices which can be calculated with the
help of the matrix formalism tools
      According to the previous sections our beam has the
elliptical cross-section. So let      be an initial phase set
occupied by particles:

Let                         . The other definition of the

   -matrix  (so-called rms-envelope matrix )  is following

where    is an initial phase space distribution. The similar
formula can be used for the definition

These definitions allow the beam dynamics to be
investigated in the terms of envelopes. Indeed, according
to the matrix formalism for both cases of the definition of
the       -matrix we have

In the presence of the space-charge the Lie map will
depend on the parameters of the beam too. In this case the
operator equation for the map     is a nonlinear equation.
The solving this equation requires the another approach.
In this paper we propose the method of step-by-step
approximations. The basic idea of this method in our case
is to calculate the envelope matrix according to the
following algorithm (compare with [5]).

Step 0:

      1) Choose the initial model distribution function f0(x)
according to the Eq.(1) and the order of our
approximation equal to N.

      2) Define the set of matrices        according to the
corresponding equations and then form the initial
nonlinear envelope matrix       :
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Step 1:

      Calculate the auxiliary envelope matrices by
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is the block  matrices calc-
ulated according to the matrix formalism by constant 
matrices         (self-consistent motion equations or 
self-consistent Hamiltonian functions), see the Eq.(2).

Step 2:

If then go to finish else change s1
on s2 and s0 on s1   and return to the first step.
      Note that in the frameworks of the matrix formalism
we can also calculate the particle-density distribution
function. According to the Eq.(2) and the properties of
the Kronecker product we can write the transformation of
X[k]:
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From the known properties of Lie maps we can write for
an arbitrary function of an initial distribution
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where T10 = -M10, T11 = (M11)-1  and other matricesT1k for
k > 1 can be calculated with the help of the recurrent
generalized Gauss's algorithm using the matrices  M 1k. It
is worthy to note that according to this algorithm one
should inverse only the matrix M 11 and then use only
matrix operations (with the Kronecker operations
extension) for calculation the necessary matrices T1k up to
the desired order. So after some calculations we can
obtain the following equation ( see the Eq.(1) )

For the convergence of our approximations methods for
envelope matrices the following condition has to be
satisfied

for β < 1. The constant of this method β can be calculated
as a function of the initial beam characteristics and the
transport system parameters. The condition β < 1 allows

the limitations on the step values |sk – sk-1| = ∆sk to be
calculated which guarantee the fulfilment of the
inequality β < 1. The preliminary calculations showed
that it is sufficient to use two - four steps of this iteration
process for some value of ∆sk. Note that the convergence
condition does not depend on the parameter α.

4  SOME NUMERICAL RESULTS
The above discussed approach was used for some
practical problems: the influence of the space--charge
forces on the optimal characteristics of the microprobe
system [6] and the halo formation problem [7]. The
corresponding computer experiments show the
advantages and flexible properties of the suggested
approach. The symbolic formulae for some models of the
space--charge distribution allow to increase effectiveness
of the calculations. Moreover this approach gives the
powerful tools for the deep investigations of the space--
charge problem both in short focusing systems and in
circular accelerators and storage rings.
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