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Abstract written in the form f5(X) = ¥ fkox[k] or in the case
k=0

This paper presents an analytical description of thgf elliptical symmetry
beam dynamics with space charge. The suggested © 5 ok © 0 [k] {k} [k]
approach is based on the Lie algebraic methods in thigy(X)= S agk“ = 5 ap(X')* X @)

. X : . i £~k £k

matrix formalism. The nonlinear operator differential k=0 k=0
equation for the corresponding Lie transformation igyherex k] = X O.I0X is the Kronecker power of
solved using a convergent recurrent procedure. On each —
elementary interval the required matrices are calculated in

the symbolic form using computer algebra codes. S“QHephasevect&r: X, R, Vs p)* dimx[k] — B<+3E'°\ék}
calculations are made for some models for beam density T Ok [
distributions. These model distributions can be used fo o symmetrical Kronecker power of the initial form
approximation of real beam distributions.  The ik A KE=XHA X:
corresponding software is compact and flexible. {k} ° Al)k]
(A, =1 (k)(Ay )

k-times

i,l =1d|n k|,

i b
1 INTRODUCTION

Many approaches to the space charge modeling

problem are known. The basic difficulties which arise . - 3
from this problem is a nonlinearity of correspondin and b(kjare the polynomial coefficients déth order,

motion equations even for simplest cases. In this aE‘Nhich can be calculated from the known expression
q P : P p?!r/kll...kn! using the lexicographic order

some evolution problems of long beams with an elliptica

cross--section in transverse phase space are discussed!‘l@ k2 e Ky

examples some special forms of phase space distribution

function are described [1]. For these distributior2.2 The Self-Field of the Space Charge

functions the . Ferrgrs mtegrgls t.echnlque.|s used. lljsing the Ferrers's integrals technique we can calculate
allows to obtain motion equations in symbolic forms 3% e desired potential for the beam in the form
expansions in series. These equations are written in a

d[n.k] = EP*:*@

[ee)
matrix form. The truncated matrix equation (up to ay :_Eb ¢(K12(u))ﬂ
certain order) are solved with the use of the matrix £p 6 A(u
formalism for Lie algebraic tools [2]. Nonlinear nature of 2

these equations leads to a necessity to use the succesw’
approximations  method.  Obtained  convergence
conditions and algorithms give opportunity to estimate a o
current step value in advance and to create necessdfy
software for modeling. Moreover the suggested approag¢bcal coordinates in which the phase ellipsoid is the
allows to use object--oriented ideology and to realize theanonical one. After some transformations we obtain the

Me&n ok ?) = K{)p(t)dt, A2 (u) = (a2 +u)b2 +u),

(u) = 52 /(a2 +U) +172 /(b2 +u) whereg, n some

dynamic modeling paradigm [3, 4]. components of the vector of self-electrical field
2mb  ®[] ¢& 2 [du
2 A SPACE CHARGE DESCRIPTION Eg = PO(BD 5 Pkq (U)O—
£o (h“ +u [JAu
2.1 The Initial Space Charge Distributions omb ©[] & 5> [Odu
" . . 0 =P[Oz Pk
e space charge distribution in the phase space is £o (b +u DAu

described with the help of a set of phase-space
distribution functions [1]. Note that in general a phase-
space distribution functiofyy (X) = f (X, s;) can be e, =0 LAE £0_ 4Py ab

Eyn Ean Ean ' E 80 a(a+ b) ’

and for our particle density distributions we can write
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0 4np0 ab control system parameters. In the frame of the matrix
,7 = n formalism [2] we can represent this map in the form
£p b(a +b)

= /\/[ Z Mlk k?] (2)
The values ofAE;, AE,can be easily calculated with the
help of REDUCE (or MATHEMATICA) codes. Note that WhereM* “are matrlces Which can be calculated with the

for the K-V distribution we havaE;, = AE, =0. Besides, help of the matrix formalism tools
According to the previous sections our beam has the

elliptical cross-section. So I8, be an initial phase set
polynomial arbitrary dzistribution ofn-th order with occupied by particles:

respect to the variables,”  the functionsaifd andAE, Mo = {Xo C XPAM X, < 1}‘

are polynomials of (2t1)-th order with respect to the

variablest andrn. Then we can return to the coordinatedet &t = (A~ . The other definition of the
x, yreferenced to a desired system. G -matrix  (so-called rms-envelope matrix ) is following
S = [ fo(X)XX*dX,

if the arbitrary distribution p(x,y) = pOGJ(Klz) is a

3 THE MOTION EQUATION m,
wheref, is an initial phase space distribution. The similar

3.1 The Motion Equation for a Single Particle formula can be used for the definition

As an example we consider the transport system with the & 0 = | JoX )X[Z]( [k]) dX.

rectilinear optical axis (there are no dipole magnets). Fathese definitions allow the beam dynamics to be

a nonbunched beam (the longitudinal self-electric field itnvestigated in the terms of envelopes. Indeed, according
missing) the motion equation for single particle can bg the matrix formalism for both cases of the definition of

written in the form thes -matrix we have
0 E N Mlk kj Ml]
:—T[y B —(1-X )By+x'y'BX+T 3[1 ;Z )"
P O Bey™ O In the presence of the space-charge the Lie map will
depend on the parameters of the beam too. In this case the
w__9 N Ey D operator equation for the magg@  is a nonlinear equation
y'=-—TXBs -1~y )Bx+xyB 3D N : . -
PO ch The solving this equation requires the another approach.

In this paper we propose the method of step-by-step
where, T =+/1+ x‘2+y'2,': d/ds. Note that the self- approximations. The basic idea of this method in our case
magnetic field is studied with the help of the coefficien#S to .calculate the envelope _matnx according to the
1N ollowing algorithm (compare with [5]).

These motion equations can be rewritten in th

following matrix form

ax _ OZO {P (s)+P (s)} ] 1) Choose the initial model distribution functix)
ds K&\ ext self according to the Eq.(1) and the order of our
approximation equal thl.

%tep 0:

The matrlcesPel)lft and P klf describe the external and

self-fields correspondingly. As an example the 2) Define the set of matrice&;* according to the
corresponding motion equations for a quadrupole lerf@responding equations and then form the  initial
system in the presence of space-charge up to third ord@nlinearenvelope matrigsy
on phase space variables are considered in [1, 6]. 6N = {60 } .

i,k=1,N

3.2 Transfer Map in the Presence of the Spaces) Define the sequence of subintervals: |_s| .S, +1)
Charge m

[ =1 =1sn, S|, 1 =0,m, spy =
The transfer map approach has been very useful f@go ! tot [0 S*] m = S

studying beam dynamics without space-charge. In this
case we can write Step 1:
M: Xo — X = M(s[so) - Xp, . .

Calculate the auxiliary envelope matrices by
whereM is called the transfer map ( or Lie map ) between & ik (s,) = a@é’“(so) +(1- a)@ék(sl), 0<a<l,
moments s, and s. If the beam is an ensemble of " N oo "
noninteracting particles then the mey(s o) dependonlyon S (s1) = Z M7 & (s0)(M7")*,

7,l=1
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M = M%(s |s0;{&¢'}) is the block matrices calc- the limitations on the step values {s5,| = As, to be
ulated accordmg to the matrix formalism by constantalculated which guarantee the fulfiment of the
matrices&, ki (self-consistent motion equations omequality B < 1. The preliminary calculations showed
self-consistent Hamiltonian functions), see the Eq.(2}hat it is sufficient to use two - four steps of this iteration
Step 2: process for some value A§. Note that the convergence
condition does not depend on the parameater

If (|61 (s)—&6's1)ll <€ then go to finish elsehange s
on s and gon s and_return to the first step. 4 SOME NUMERICAL RESULTS

Note that in the frameworks of the matrix formalis

we can also calculate the particle-density distributio rhaectisgoviot()jllas:*nfsii iﬂﬁ::r?gg ov;/ifweuzegcg?-rch::n;e
function. According to the Eq.(2) and the properties of P P 9

the Kronecker product we can write the transformation op'ces on the optimal characteristics of the microprobe
system [6] and the halo formation problem [7]. The

[k]
X correspondmg computer experiments show the
[k] 1J Kj [ j] advantages and flexible properties of the suggested
XHH= Z M 0 = .Z_l'\/' X0 approach. The symbolic formulae for some models of the
1= space--charge distribution allow to increase effectiveness
ml 1k, of the calculations. Moreover this approach gives the
M= > OM izm powerful tools for the deep investigations of the space--
Kyt ..tkp=l 1 =1 charge problem both in short focusing systems and in
ki 21 circular accelerators and storage rings.
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for B < 1. The constant of this meth@dcan be calculated
as a function of the initial beam characteristics and the
transport system parameters. The condifior 1 allows
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