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Abstract where Wyt is a potential of external field, Jis a
potential of space charge field of the beans, a particle
Emittance conservation of a high brightness particlenergy, E is an amplitude of accelerating fielg,is/ a
beam in RF accelerator is an issue for existing and futuvelocity of synchronous particléysis a synchronous
high intensity accelerator projects. If the beam iphase,w is an RF frequencyQ, is a transverse
matched with external focusing field, its distributionfrequency of particle oscillation, r is a particle radius, and
function as well as beam emittance are Conserveg.: Z-7z is a |0ngitudina| deviation from Synchronous
Finding matched conditions for the beam requireggyticle.
solutions of the self-consistent problem for beam  General approach to find a self-consistent beam
distribution function in phase space. In this paper agjstribution function is to represent it as a function of

analytical approximate solution of Vlasov-Poissonqamiltonian f = f(H). Convenient way is to use an

equations for self-consistent particle equilibrium in RFexponentiaI function f =efexp (- H / Ho):

field is found. Solution is attained in approximation of

high brightness beam. Distribution function in phase 0% + pf/ 5 -
space is determined as a stationary function of the enerpy= f, exp (- X - Pz -q Uext + Uny ).
integral. Equipartitioning for beam distribution between 2myHo 2 my*Ho Ho

degrees of freedom follows directly from the choice of3)
stationary distribution function. Analytical expression for

r-z equilibrium beam profile in RF field is obtained. Let us rewrite distribution function (3) as follow
2 2
- Px * By 7 qUextt Upy?
1 INTRODUCTION f=foexp(- = -2%2? Kty Vo), @

The problem of stationary self-consistent particle
distribution in RF field was considered in several bookavhere p=2V<g> =2V <g> andp =2V 92> are
and papers. In Ref[1] solution of one-dimensional double root-mean-square (rms) beam sizes in phase
problem for longitudinal phase space was found. Spacpace. Transverse;, and longitudinalgi, rms beam
charge density of cylindrical bunch was found to beemittances are:
constant in every cross section of the bunch, but
dep_endent on Ic_>ngi_tudina_1l coor_dinate. In F{@I.s_patial g=2P Yo =2 Pt Vey?> | (5)
particle distribution in 3-dimensional configuration space mc mc
was calculated numerically. In this paper an analytical
approximate solution for 3-D self-consistent particle g=2P <> . (6)
equilibrium is attained [3]. mc

Taking together Eqs. (3) - (6), the value ¢f ehn
2 BEAM EQUILIBRIUM IN RF FIELD be expressed as a function of beam parameters:

2 2
Consider an intense bunched beam of particles with16.-H, =m ¢ & -mc & -mc & o 7)

charge g and mass m, propagating in an uniform focusing V o> Y <y Y <
channel with an applied accelerating RF fidéhgle-
particle Hamiltonian of particle motion is given by [1]: & - & (8)
R I
H p)2( + p)z’ p% Ub 1
= + + +q=2
2my 2my? A Lo+ V2 ' @) whereR = 2/<x% is a beam radius ard= 2\ <Z%> is a

half-size of the bunch length.

_VE e Equations (7) and (8) express the equipartitioning
Ue =" '0%)5"1 ©s- %Z) condition for the beam in RF field [4, 5]. From the above
derivations it is clear, that equipartitioning is a
consequence of a stationarity of the beam distribution

- Sinds +v% { coshs] +7y Qr?, ) function, Eq. (3).
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3 SPACE CHARGE FIELD OF THE where §(Q) is a Bessel functionom is a m-th root of the
BUNCH equation g(0) = 0, and kJ wa /s is a wave number.
To find a self-consistent particle distribution, one hagxpansion (14) obeys Dirichlet boundary conditiog(a)
to solve a nonlinear Poisson's equation for unknowe v, at the perfect conductive surface of the channel.
space charge potential of the beam. Space charge dengifynstant \; is defined in such a way that the total
of the beam is : potential of the structure vanishes at the bunch center:
Vext (01 O) + \{) (O! 0)y_2 =0

(00 00 00 To find an approximate solution of Poisson's
p(xyd)=q f dp« dp, dp; equation, let us take only the first term in the near-center
Jooo )0 J-0 expansion of exponential function as
exp(-Vext -Vby D) = 1-Vext -Vpy 2 Poisson's equation
U + Uy 2 then becomes:
=po exp (-le‘Hiby , ©@ . .
° [1+ V8m + (k)Y ? GOR)
wherep, is the space charge density in the center of thé&so m=1 8kb a
bunch. The value g, is unknown at this point due to
the unknown space charge potential of the begriet Jo (Lomé) [Anm cos (knn) + Bam sin (knn)]
us introduce an average value of space charge density,
which is equal to the density of an equivalent cylindrical = (1 - Vext) V- Vo . (15)
bunch with the same beam radius and the same half-
bunch length: Space charge dominated beam transport is achieved,
o= I A , (10) if b >>1. It gives a pos.sibillity to simplify the I?oisson's
MRl ¢ equation (15). Expression in square brackets in Eq. (15)
is
where | is an average beam current ard 2rc/w is a
RF wavelength. The value pf differs from the average V& + (kzn)zy'z R\2 _
value of space charge dengitgs a factor of k: 1+ =om st — 8Kkb (©%) (g) =1+, (16)
Po=kp. (11) 2.2 .
5 = VG + (ken)"y 2. G4 B, (17)
Introducing dimensionless variables: 8kb a
qu _qu B B Roots of the Bessel function arer =2.408,002 = 5.52.
Vext= % , Vb= qH—b ;€ —é , N —% + (12)  parameter kis close to unity:
[0} [0}
where a is a channel radius, Poisson's equation in kz= 2n (ﬁ) =1. (18)

cylindrical polar coordinates can be expressed as

Taking into account, thad¢ <1, R/a= 0.5, the
value of 8 is much smaller than unity for a high

19Vh ,0Vb | Vb

&8 652 on*y’ brightness beam:
5=1 <«<1 . (19)
=_.8kb (v a2 exp. Vb
) \ E) exp- (Vext + 72) . (13) bk

Therefore, expression, Eg. (16), can be taken out of the
Here, 30 [Ad /(2m), Ad is a phase bunch length, sumin Eqg. (15). With this approximation, self-consistent
bIZIRZ/(ByICstZ) is a dimensionless value of beamsSPace charge dominated beam potential is:

brightness, and. [ 4memc’/q is a characteristic value of
beam current. To solve the nonlinear equation (13), let us Vp = - A Vext - (20)
follow the method suggested in Ref. [6]. 1+9%
Represent unknown space charge potential of the Second approximation to the self-consistent potential
beam by Fourier-Bessel series: is given by holding one more term in the expansion of
exponential function as P&Vext-Vby D=
® 1 - Vext-Vy 2 + 0.5(Vext+Vey 22 , so that we have
Vp=Vo+ r; > Jo(Vom&) [ Anm cos (knn)
o m=1 Vb =YL +8Vext - V(145 Vet Vext(Vext -2) . (21)
* Bnmsin (ikmn)] , (14) With increasing of beam brightness { 0), solution of

Eqg. (20) becomes close to that of Eq.(21).
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Taking the first approximation to the space chargehat longitudinal bunch size is, in the first approximation,
potential of the beam (20), the Hamiltonianthe same as for zero - current mode. Therefore, at
corresponding to the self-consistent bunch distribution iR(¢)=0, the left bunch boundary &= - 2ps and the
as follows: value of constant is
const = Bs cosps - 2 Sirps . (28)

%%, b3
H = + P20 YUe . (22) . | . o
2my 2my? 1+0 Finally, the first approximation to the beam profile is

. - . . iven by the following equation
Equation (22) indicates that in the presence of mtensg, y geq

bright bunched beand (<< 1)the stationary longitudinal _ WORY o wl .
phase space of the beam becomes narrow in momentum FR.O = (E) sin (s - TS) + sinps
spread, remaining, in the first approximation, the same in

coordinate. This is in a qualitative agreement with the wl 2
study of Ref[1]. - (29s -V—S) coghs+ C1R =0 . (29)
4 STATIONARY BEAM PROFILE In Fig. 1 the uniformly populated bunch with boundary,

Eqg. (29), is presented. As seen, bunch boundary in

Self consistent space charge distribution of matchegonfiguration space is similar to separatrix shape.
beam in the channel is given from the Poisson's equation

by 0.08 ¢
pb =-% AUb . (23) 0.06 f

Substitution of Eq. (21) into Eq. (23) gives the stationary 0.04
particle density distribution inside the bunch: 0.02"
X OFf

p(rIZ) = pO{ 1- + - -0.02 F
v (1+6) = 26Vext E

-0.04

(avext)2 + (avext)2 -0.06 ;

oogbo o i b
_672%(&)2 § yn } . (29) 03 -02 01 0 01 02
327 <> A’ [(1+8)% - 20Vex] »

For high brightness beam, parame@r<< 1, . ) . . o
therefore, space charge density is close to constant withfrig. 1. Approximate stationary particle distribution in RF
the bunch. From Eq. (20) it follows, that, in the first filed for ¢s=-1, G = 3.8, k =w/vs.
approximation, space charge potential of the beam is the
same function of coordinates, as the external potential, 5 CONCLUSIONS
with opposite sign. Therefore, equatios.{r, {)= const
gives the family of equipotential lines of space charg%u
field of the beam:

An approximate self-consistent solution for a

nched beam in an uniform focusing channel with
applied RF acceleration field has been obtained.
Analytical derivations were performed in the limit of a

Io%)sin(q)s - co—Z) -sinds + wg coshs + C P= const, high brightness beam, when space charge forces are

s Vs Vs dominated. Nonlinear equation for stationary beam
(25) profile as well as expression for space charge density of
) the beam inside the bunch are derived.
c=MyQ'w (26)
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