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Abstract

Emittance conservation of a high brightness particle
beam in RF accelerator is an issue for existing and future
high intensity accelerator projects. If the beam is
matched with external focusing field, its distribution
function as well as beam emittance are conserved.
Finding matched conditions for the beam requires
solutions of the self-consistent problem for beam
distribution function in phase space. In this paper an
analytical approximate solution of Vlasov-Poisson
equations for self-consistent particle equilibrium in RF
field is found. Solution is attained in approximation of
high brightness beam. Distribution function in phase
space is determined as a stationary function of the energy
integral. Equipartitioning for beam distribution between
degrees of freedom follows directly from the choice of
stationary distribution function. Analytical expression for
r-z equilibrium beam profile in RF field is obtained.

1  INTRODUCTION

The problem of stationary self-consistent particle
distribution in RF field was considered in several books
and papers. In Ref. [1] solution of one-dimensional
problem for longitudinal phase space was found. Space
charge density of cylindrical bunch was found to be
constant in every cross section of the bunch, but
dependent on longitudinal coordinate. In Ref. [2] spatial
particle distribution in 3-dimensional configuration space
was calculated numerically. In this paper an analytical
approximate solution for 3-D self-consistent particle
equilibrium is attained [3].

2  BEAM EQUILIBRIUM IN RF FIELD

Consider an intense bunched beam of particles with
charge q and mass m, propagating in an uniform focusing
channel with an applied accelerating RF field. Single-
particle Hamiltonian of particle motion is given by [1]:
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where Uext is a potential of external field, Ub is a
potential of space charge field of the beam, γ is a particle
energy, E is an amplitude of accelerating field, vs is a
velocity of synchronous particle, ϕ s is a synchronous
phase, ω  is an RF frequency, Ω r is a transverse
frequency of particle oscillation, r is a particle radius, and
ζ = z - zs is a longitudinal deviation from synchronous
particle.

 General approach to find a self-consistent beam
distribution function is to represent it as a function of
Hamiltonian f = f(H). Convenient way is to use an
exponential function f = fo exp (- H / Ho) :
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Let us rewrite distribution function (3) as follow
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where pt = 2 <px
2>  = 2 <py

2>  and pl = 2 <pz2>  are
double root-mean-square (rms) beam sizes in phase
space. Transverse, εt, and longitudinal, εl, rms beam
emittances are:
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Taking together Eqs. (3) - (6), the value of Ho can
be expressed as a function of beam parameters:
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where R = 2 <x2> is a beam radius and l = 2 <ζ2>  is a
half-size of the bunch length.

Equations (7) and (8) express the equipartitioning
condition for the beam in RF field [4, 5]. From the above
derivations it is clear, that equipartitioning is a
consequence of a stationarity of the beam distribution
function, Eq. (3).
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3   SPACE CHARGE FIELD OF THE
BUNCH

To find a self-consistent particle distribution, one has
to solve a nonlinear Poisson's equation for unknown
space charge potential of the beam. Space charge density
of the beam is :
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∞
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∞
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= ρo  exp (- q Uext + Ubγ -2
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)  ,                        (9)

where ρo is the space charge density in the center of the
bunch. The value of ρo is unknown at this point due to
the unknown space charge potential of the beam Ub. Let
us introduce an average value of space charge density,
which is equal to the density of an equivalent cylindrical
bunch with the same beam radius and the same half-
bunch length:

ρ =  I λ
2π R2 l c

  ,                               (10)

where I is an average beam current and λ = 2πc/ω is a
RF wavelength. The value of ρo  differs from the average
value of space charge density ρ as a factor of k:

ρo = k ρ .                                   (11)

Introducing dimensionless variables:
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 ,    ξ = r
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a
 ,     (12)

where a is a channel radius, Poisson's equation in
cylindrical polar coordinates can be expressed as
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Here, δϕ ∫ ∆ϕ /(2π) , ∆ϕ is a phase bunch length,
b ∫ 2IR2/(βγIcεt

2) is a dimensionless value of beam
brightness, and Ic ∫ 4πεomc3/q  is a characteristic value of
beam current. To solve the nonlinear equation (13), let us
follow the method suggested in Ref. [6].

Represent unknown space charge potential of the
beam by Fourier-Bessel series:

Vb = Vo + ∑
n=o

∞
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+  Bnm sin (kznη)] ,                                           (14)

where Jo(ζ) is a Bessel function, υom is a m-th root of the
equation Jo(ζ) = 0, and kz ∫ ωa /vs  is a wave number.
Expansion (14) obeys Dirichlet boundary condition Vb(a)
= Vo at the perfect conductive surface of the channel.
Constant Vo is defined in such a way that the total
potential of the structure vanishes at the bunch center:
Vext (0, 0) +  Vb (0, 0) γ -2  = 0 .

To find an approximate solution of Poisson's
equation, let us take only the first term in the near-center
expansion of  exponent ia l  funct ion as
exp(-Vext -Vbγ -2) ≈ 1-Vext -Vbγ -2. Poisson's equation
then becomes:
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Space charge dominated beam transport is achieved,
if b >> 1. It gives a possibility to simplify the Poisson's
equation (15). Expression in square brackets in Eq. (15)
is
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Roots of the Bessel function are υo1 =2.408, υo2 = 5.52.
Parameter kz is close to unity:

kz =   2π (  a
λ β

) ≈ 1  .                           (18)

Taking into account, that δϕ  ≤ 1, R / a ≈ 0.5, the
value of δ is much smaller than unity for a high
brightness beam:

δ  ≈ 1
bk

  << 1  .                             (19)

Therefore, expression, Eq. (16), can be taken out of the
sum in Eq. (15). With this approximation, self-consistent
space charge dominated beam potential is:

Vb =  - γ2

1 + δ
 Vext  .                    (20)

Second approximation to the self-consistent potential
is given by holding one more term in the expansion of
exponent ia l  funct ion as exp(-Vext-Vbγ -2) ≈
1 - Vext-Vbγ -2 + 0.5(Vext+Vbγ -2)2 ,  so that we have

Vb = γ 2[1 + δ -Vext - (1+δ -Vext)
2-Vext(Vext -2) ]. (21)

With increasing of beam brightness (δ → 0), solution of
Eq. (20) becomes close to that of Eq.(21).
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Taking the first approximation to the space charge
potential of the beam (20), the Hamiltonian
corresponding to the self-consistent bunch distribution is
as follows:
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Equation (22) indicates that in the presence of intense,
bright bunched beam (δ << 1) the stationary longitudinal
phase space of the beam becomes narrow in momentum
spread, remaining, in the first approximation, the same in
coordinate. This is in a qualitative agreement with  the
study of Ref. [1].

4   STATIONARY BEAM PROFILE

Self consistent space charge distribution of matched
beam in the channel is given from the Poisson's equation
by

ρb = - εo ∆Ub  .                             (23)

Substitution of Eq. (21) into Eq. (23) gives the stationary
particle density distribution inside the bunch:
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For high brightness beam, parameter δ << 1,
therefore, space charge density is close to constant within
the bunch. From Eq. (20) it follows, that, in the first
approximation, space charge potential of the beam is the
same function of coordinates, as the external potential,
with opposite sign. Therefore, equation Uext (r, ζ)= const
gives the family of equipotential lines of space charge
field of the beam:

Io( ωr
γvs

)sin(ϕs - 
ωζ
vs

) -sinϕs + ωζ
vs

 cosϕs + C r2= const,

(25)

C = m γ Ωr
2 ω

2 vs E
  .                           (26)

Consider bunch with boundary R(ζ), defined by
nonlinear equation :

Io(ωR
γvs

)sin(ϕs - 
ωζ
vs

) -sinϕs + ωζ
vs

 cosϕs + C1 R
2= const .(27

)

In general case, bunch boundary R(ζ) does not create an
equipotential surface. Nevertheless, space charge
potential of uniformly populated bunch with boundary,
Eq. (27), is close to that, given by Eq. (2). The value of
constant in Eq. (27) can be defined from the condition,

that longitudinal bunch size is, in the first approximation,
the same as for zero - current mode. Therefore, at
R(ζ)=0, the left bunch boundary is ζ = - 2ϕs and the
value of constant is

const = 2ϕs cosϕs - 2 sinϕs  .                  (28)

Finally, the first approximation to the beam profile is
given by the following equation

F (R, ζ) =  Io (ωR
γvs

) sin (ϕs - 
ωζ
vs

) + sinϕs

- (2ϕs - 
ωζ
vs

) cosϕs + C1 R
2 = 0  .                (29)

In Fig. 1 the uniformly populated bunch with  boundary,
Eq. (29), is presented. As seen, bunch boundary in
configuration space is similar to separatrix shape.
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Fig. 1. Approximate stationary particle distribution in RF
filed for ϕs = -1, C1 = 3.8 , k = ω/vs .

5    CONCLUSIONS

An approximate self-consistent solution for a
bunched beam in an uniform focusing channel with
applied RF acceleration field has been obtained.
Analytical derivations were performed in the limit of a
high brightness beam, when space charge forces are
dominated. Nonlinear equation for stationary beam
profile as well as expression for space charge density of
the beam inside the bunch are derived.

REFERENCES

[1] I.M.Kapchinsky: Theory of Resonance Linear
Accelerators,  Harwood, 1985.

[2] M.Reiser: Theory and Design of Charged Particle
Beams, Wiley, New York, 1994.

[3] Y.Batygin, RIKEN Accelerator Progress Report
1997, Vol. 31, ISSN 0289-842X, 237.

[4] R.Jameson, IEEE Trans. Nucl. Sci., NS-28, 2408
(1981).

[5] I.Hofmann, IEEE Trans. Nucl. Sci., NS-28, 2399
(1981).

[6] Y.Batygin, Phys. Rev. E, 57, 6020 (1998).

1099


