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Abstract

This is the second part of two our papers in which we
present applications of wavelet analysis to polynomial ap-
proximations for a number of acceleratorphysics problems.
We consider applications of very useful fast wavelet trans-
form technique to calculations in symplectic scale of spaces
and to quasiclassical evolution dynamics.

1 INTRODUCTION

This is the second part of two our presentations in which
we consider applications of methods from wavelet analy-
sis to nonlinear acceleratorphysics problems. This is a
continuation of our results from [1], [2], which is based
on approach of two of us from [3], [4] to investigation
of nonlinear problems – general, with additional structures
(Hamiltonian, symplectic or quasicomplex), chaotic, quasi-
classical, quantum, which are considered in the framework
of local(nonlinear) Fourier analysis, or wavelet analysis.
Wavelet analysis is a relatively novel set of mathematical
methods, which gives us a possibility to work with well-
localized bases in functional spaces and with the general
type of operators (differential, integral, pseudodifferential)
in such bases. Now we consider applications of very useful
and powerful method of fast wavelet transform to the prob-
lems which appear in nonlinear orbital dynamics in stor-
age rings [5]. The first problem is the explicit calculation
of quasiclassical evolution which we consider in section 2
and the second problem, which we consider in section 3,
is calculations in (perturbed) Hamiltonian systems in cases
when we need to consider multiresolution expansion not in
one functional space but in infinite scale of spaces with un-
derlying symplectic structure. In section 4 we consider the
key point of this approach which gives useful maximally
sparse representation of differential operator that allows us
to take into account contribution fromeach level of resolu-
tion.

2 QUASICLASSICAL EVOLUTION

Let we consider classical and quantum dynamics in phase
space
 = R2m with coordinates(x; �) and generated by
HamiltonianH(x; �) 2 C1(
;R). If �Ht : 
 �! 
 is
(classical) flow then time evolution of any bounded clas-
sical observable or symbolb(x; �) 2 C1(
; R) is giv-

en by bt(x; �) = b(�Ht (x; �)). Let H = OpW (H) and
B = OpW (b) are the self-adjoint operators or quantum
observables inL2(Rn), representing the Weyl quantization
of the symbolsH; b [5]
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ei<(x�y);�>=�hu(y)dyd�;

whereu 2 S(Rn) and Bt = eiHt=�hBe�iHt=�h be the
Heisenberg observable or quantum evolution of the observ-
ableB under unitary group generated byH. Bt solves the
Heisenberg equation of motion

_Bt =
i

�h
[H;Bt]:

Let bt(x; �; �h) is a symbol ofBt then we have the following
equation for it

_bt = fH; btgM ; (1)

with initial condition b0(x; �; �h) = b(x; �). Here
ff; ggM(x; �) is the Moyal brackets of the observables
f; g 2 C1(R2n), ff; ggM (x; �) = f]g � g]f , wheref]g
is the symbol of the operator product and is presented by
the composition of the symbolsf; g

(f]g)(x; �) =
1

(2��h)n=2

Z
R4n
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�f(x+ !; �+ �)g(x+ r; � + �)d�d�drd!:

For our problems it is useful thatff; ggM admits the for-
mal expansion in powers of�h: ff; ggM(x; �) � ff; gg +

2�j
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� = (�1; : : : ; �n) is a multi-index,j�j = �1 + : : :+ �n,
Dx = �i�h@x. So, evolution (1) for symbolbt(x; �; �h) is

_bt = fH; btg+
1

2j

X
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At �h = 0 this equation transforms to classical Liouville
equation

_bt = fH; btg: (3)

Equation (2) plays a key role in many quantum (semiclas-
sical) problem. We note only the problem of relation be-
tween quantum and classical evolutions or how long the
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evolution of the quantum observables is determined by the
corresponding classical one. Our approach to solution of
systems (2), (3) is based on our technique from [1]-[4] and
very useful linear parametrization for differential operators
which we present in section 4.

3 SYMPLECTIC HILBERT SCALES VIA
WAVELETS

We can solve many important dynamical problems such
that KAM perturbations, spread of energy to higher modes,
week turbulence, growths of solutions of Hamiltonian
equations only if we consider scales of spaces instead of
one functional space. For Hamiltonian system and their
perturbations for which we need take intoaccount under-
lying symplectic structure we need to consider symplectic
scales of spaces. So, if_u(t) = JrK(u(t)) is Hamiltoni-
an equation we need wavelet description of symplectic or
quasicomplex structure on the level of functional spaces.
It is very important that according to [8] Hilbert basis is
in the same time a Darboux basis to corresponding sym-
plectic structure. We need to provide Hilbert scalefZsg
with symplectic structure [7], [9]. All what we need is
the following. J is a linear operator,J : Z1 ! Z1,
J(Z1) = Z1, whereZ1 = \Zs. J determines an iso-
morphism of scalefZsg of orderdJ � 0. The operator
J with domain of definitionZ1 is antisymmetric inZ:
< Jz1; z2 >Z= � < z1; Jz2 >Z ; z1; z2 2 Z1. Then
the triple

fZ; fZsjs 2 Rg; � =< �Jdz; dz >g

is symplectic Hilbert scale. So, we may consider any
dynamical Hamiltonian problem on functional level. As
an example, for KdV equation we haveZs = fu(x) 2

Hs(T 1)j
R 2�
0
u(x)dx = 0g; s 2 R; J = @=@x; J

is isomorphism of the scale of order one,�J = �(J)�1

is isomorphism of order�1. According to [10] gener-
al functional spaces and scales of spaces such as Holder–
Zygmund, Triebel–Lizorkin and Sobolev can be character-
ized through wavelet coefficients or wavelet transforms. As
a rule, the faster the wavelet coefficients decay, the more
the analyzed function is regular [10]. Most important for
us example is the scale of Sobolev spaces. LetHk(R

n)
is the Hilbert space of all distributions with finite norm
ksk2Hk(Rn)

=
R
d�(1 + j�j2)k=2jŝ(�)j2: Let us consider

wavelet transform

Wgf(b; a) =

Z
Rn
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b 2 Rn; a > 0, w.r.t. analyzing waveletg, which is
strictly admissible, i.e.

Cg;g =

Z 1

0

da

a
j �ĝ(ak)j2 <1:

Then there is ac � 1 such that

c�1ksk2Hk(Rn)
�

Z
Hn

dbda

a
(1 + a�2
)jWgs(b; a)j

2

� cksk2Hk(Rn)

This shows that localization of the wavelet coefficients at
small scale is linked to local regularity.

4 FAST WAVELET TRANSFORM FOR
DIFFERENTIAL OPERATORS

Let us consider multiresolution representation: : : � V2 �

V1 � V0 � V�1 � V�2 : : : (see our other paper from
this proceedings for details of wavelet machinery). Let
T be an operatorT : L2(R) ! L2(R), with the kernel
K(x; y) andPj : L2(R) ! Vj (j 2 Z) is projection
operators on the subspaceVj corresponding to j level of
resolution: (Pjf)(x) =

P
k < f; 'j;k > 'j;k(x). Let

Qj = Pj�1�Pj is the projection operator on the subspace
Wj then we have the following "microscopic or telescop-
ic" representation of operator T which takes into account
contributions from each level of resolution from different
scales starting with coarsest and ending to finest scales:

T =
X
j2Z

(QjTQj + QjTPj + PjTQj)

We remember that this is a result of presence of affine
group inside this construction. The non-standard form of
operator representation [11] is a representation of an oper-
ator T as a chain of triplesT = fAj; Bj ;�jgj2Z, acting
on the subspacesVj andWj :

Aj : Wj !Wj; Bj : Vj !Wj;�j :Wj ! Vj ;

where operatorsfAj; Bj ;�jgj2Z are defined asAj =
QjTQj; Bj = QjTPj ;�j = PjTQj. The operatorT ad-

mits a recursive definition viaTj =

�
Aj+1 Bj+1

�j+1 Tj+1

�
,

whereTj = PjTPj and Tj works onVj : Vj ! Vj .
It should be noted that operatorAj describes interaction
on the scalej independently from other scales, opera-
torsBj ;�j describe interaction between the scale j and all
coarser scales, the operatorTj is an "averaged" version of
Tj�1.

The operatorsAj ; Bj;�j; Tj are represented by matrices
�j; �j; 
j ; sj

�
j
k;k0 =

Z Z
K(x; y) j;k(x) j;k0(y)dxdy

�
j
k;k0 =

Z Z
K(x; y) j;k(x)'j;k0(y)dxdy (4)



j
k;k0 =

Z Z
K(x; y)'j;k(x) j;k0(y)dxdy

s
j
k;k0 =

Z Z
K(x; y)'j;k(x)'j;k0(y)dxdy

We may compute the non-standard representations of oper-
atord=dx in the wavelet bases by solving a small system
of linear algebraical equations. So, we have for objects (4)

�
j
i;` = 2�j

Z
 (2�jx� i) 0(2�j � `)2�jdx
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= 2�j�i�`

�
j
i;` = 2

�j

Z
 (2�jx� i)'0(2�jx� `)2�jdx

= 2�j�i�`



j
i;` = 2�j

Z
'(2�jx� i) 0(2�jx� `)2�jdx

= 2�j
i�`;

where

�` =

Z
 (x� `) d

dx
 (x)dx

�` =

Z
 (x� `) d

dx
'(x)dx


` =

Z
'(x� `) d

dx
 (x)dx

then by using refinement equations

'(x) =
p
2

L�1X
k=0

hk'(2x� k);

 (x) =
p
2

L�1X
k=0

gk'(2x� k);

gk = (�1)khL�k�1; k = 0; : : : ; L� 1 we have in terms of
filters (hk; gk):

�j = 2

L�1X
k=0

L�1X
k0=0

gkgk0r2i+k�k0;

�j = 2

L�1X
k=0

L�1X
k0=0

gkhk0r2i+k�k0;


i = 2

L�1X
k=0

L�1X
k0=0

hkgk0r2i+k�k0;

wherer` =
R
'(x � `) d

dx
'(x)dx; ` 2 Z. Therefore, the

representation ofd=dx is completely determined by the co-
efficientsr` or by representation ofd=dx only on the sub-
spaceV0. The coefficientsr`; ` 2 Z satisfy the following
system of linear algebraical equations

r` = 2

2
4r2l + 1

2

L=2X
k=1

a2k�1(r2`�2k+1 + r2`+2k�1)

3
5

and
P

` `r` = �1, wherea2k�1 = 2
PL�2k

i=0 hihi+2k�1,
k = 1; : : : ; L=2 are the autocorrelation coefficients of the
filter H. If a number of vanishing momentsM � 2 then
this linear system of equations has a unique solution with
finite number of non-zeror`, r` 6= 0 for �L + 2 �
` � L � 2; r` = �r�`. For the representation of op-
eratordn=dxn we have the similar reduced linear system
of equations. Then finally we have for action of operator
Tj(Tj : Vj ! Vj) on sufficiently smooth functionf :

(Tjf)(x) =
X
k2Z

(2�j
X
`

r`fj;k�`)'j;k(x);

where'j;k(x) = 2�j=2'(2�jx� k) is wavelet basis and

fj;k�1 = 2�j=2

Z
f(x)'(2�jx� k + `)dx

are wavelet coefficients. So, we have simple linear para-
metrization of matrix representation of our differential op-
erator in wavelet basis and of the action of this operator on
arbitrary vector in our functional space.
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