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Abstract

Design of particle accelerators with intense beams
requires careful control of space charge problem. To
obtain accurate treatment of the problem, solution of the
Poisson's equation for electrostatic potential created by an
arbitrary space charge distribution of the beam is required.
Numerical routines developed for 2D and 3D space charge
field calculation of high current beam are examined. Two
numerical techniques are used: (i) finite-difference
method, combining Fourier expansion and Gauss
elimination and (ii) spectral method, utilizing Fourier
expansion of electrostatic potential. Accuracy and time
consuming for calculation of test problem are compared.

1  NUMERICAL ERRORS  AND
CONSERVATION LAW

Particle-in-cell code BEAMPATH has been
developed for study of wide range of problems with
intense beams [1]. Space charge field of the beam at every
time step of particle trajectories integration is calculated
from the Poisson's equation  ∆U = - Q, where U is a space
charge potential and Q is a space charge density of the
beam. Calculation includes distribution of space charge of
macroparticles among the grid nodes, solution of
Poisson's equation on a grid, and differentiation of grid
potential function to find components of electrostatic field
of the beam.

Important point in numerical simulations is a balance
between accuracy and required resources of computer to
get an efficient  solution of the problem. Good accuracy in
space charge problem is obtained, if number of
macroparticles per cell is large enough and if a mesh size
is much smaller, than the beam size. Meanwhile, even if
these conditions are fulfilled, the following errors are
unavoidable: (i) errors due to discrete charge
representation in particle method, (ii) errors due to
substitution of exact derivatives of Poisson's equation by
approximation formulas, (iii) errors of differentiation of
potential function to obtain values of electric field
components, and (iiii) computer round-off errors.

To control errors of calculations, the following
parameter can be used

g =  1- E dS
S

 / Q dV
V

  ,                    (1)

which has a meaning of error of the Gauss theorem. It is
clear, that in exact calculations parameter g=0. In Eq. (1)
the denominator is equal to the total charge of the beam,
which is known exactly and does not depend on numerical
method. The numerator in Eq. (1) depends on solution of

the Poisson's equation and includes all errors, arising at
the stage of space charge calculations. Control of the
Gauss theorem, Eq. (1), gives an integral numerical error.
Meanwhile, the Gauss theorem does not provide
information about fluctuation of solution in detail. An
extra criteria like averaged deviation from the exact
solution is required. Below we consider numerical
technique and typical errors of numerical solution of
Poisson's equation in different coordinate systems.

2   SPACE CHARGE SOLVER IN 2D
CARTESIAN COORDINATES

Space charge field of a z-uniform beam is calculated
from the Poisson equation in two-dimensional Cartesian
coordinates (see Fig. 1a)

∂2U

∂x2
 + ∂

2U

∂y2
   = - Q (x,y) , U(Γ) = 0  ,         (2)

with Dirichlet boundary condition for potential U at the
surface of an infinite pipe, Γ. Unknown potential of the
beam at grid points, U(xi, yj), is represented as Fourier
series:

Uij = ∑
n=1

Nx-1

∑
m=1

Ny-1

 Unm sin( πni
Nx

 ) sin( πmj
Ny

) ,       (3)

similar for space charge density, Q(xi, yj). After
substitution of expansions (3) into Poisson's equation (2),

Fourier coefficients of  space charge, Qnm, and potential,

Unm, are connected by an algebraic relationship

Unm   = Qnm

( πn
a

)2+ (πm
b

)2
   ,                   (4)

which gives solution of the problem.
In Table 1 the error of the Gauss theorem as well as

the round-off error for the test problem with random
initial data are presented. As seen, parameter g has a

value of ~10 -2 - 10 -4 .

3  SPACE CHARGE SOLVER IN 2D
CYLINDRICAL COORDINATES

Space charge field of the train of axial-symmetric
bunches is calculated from the Poisson equation in two-
dimensional cylindrical coordinates:

1
r

 ∂
∂r

 (r∂U

∂r
) + ∂

2U

∂z2
  = - Q (r,z)  ,                 (5)
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with  Dirichlet boundary conditions at the surface of the
tube, Neumann condition at the axis and periodic
condition in z-direction (see Fig. 1b):

U (a,z) = 0 ;  ∂U 

∂r
 (0, z)= 0 ,  U (r,z) = U (r,z + L)  .      (6)

Poisson's equation (5) is substituted by finite-
difference analog:

Uk, j+1 (1+ 1
2(j-1)

) - 2Uk, j (1+hr
2

hz
2
 ) + Uk, j-1 (1- 1

2(j-1)
) 

+ Uk+1, j (hr

hz

)2  +  Uk-1, j (hr

hz

)2 = - Qk,j hr
2  .                 (7)

Calculations start with Fourier expansion of
unknown potential, Uk,j , in z-direction

Uk,j = Um(j) exp( - i 2π (k-1) (m-1)

Nz
)∑

m=1

Nz

  ,           (8)

similar for space charge density, Qk,j. Coefficients of

Fourier expansion, Um(j), are calculated via inverse
Fourier transform:

Um(j) = 1
Nz

 Ukj exp (i 2π (k-1) (m-1)

Nz
)∑

k=1

Nz
  ,         (9)

similar for Qm(j). Substitution of expansion (8) into the
finite-difference analog of the Poisson's equation (7),
results in a three-diagonal matrix equation:

αj Um(j+1) + βj Um(j) + γj Um(j-1) = wj  ,             (10)

which is solved utilizing the Gauss elimination method
[2]. After that, the potential in grid points is calculated
using Fourier series (8).

In Table 2 results of numerical solution of the test
problem for axial-symmetric bunch with Gaussian
distribution

Q = 1
(2π)3/2 σ2 σz

  exp (- x
2 + y2

2σ2
  - z2

2σz
2
)  ,     (11)

are presented. Potential of the Gaussian bunch is given by

U= d q

4π3/2(2σ2 +q) (2σz
2+q)

 exp[- x2+y2

(2σ2+q)
 - z2

(2σz
2+q)

]
o

∞
. (12)

In every point the numerical solution is different from the
exact one. The accumulated error among all particles,
normalized on the maximum value of space charge, gives
an averaged error:

ε =  1
N

 (
Enumer

(i)
 (r,z)  - Eanalyt

(i)
 (r,z)

Emax

)∑
i=1

N
  .          (13)

which has a value of 10 -2 - 10 -3   for the considered case.
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Fig. 1. On space charge calculations for :
(a) z-uniform beam, (b) axial-symmetric beam, (c) beam
with 3D particle distribution.
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4   SPACE CHARGE SOLVER IN 3D
CARTESIAN COORDINATES

Space charge field of the bunched beam with 3D
quadrupole symmetry is calculated from Poisson's
equation in three-dimensional Cartesian coordinates (see
Fig. 1c):

∂2U

∂x2
 + ∂

2U

∂y2
 + ∂

2U

∂z2
  = - Q (x, y, z)   ,         (14)

 U(Γ) = 0 , U (x,y,z) = U (x,y,z + L)  ,         (15)

with Dirichlet boundary condition for potential U at the
surface of the rectangular pipe and periodic conditions in
longitudinal direction [3]. The method of solution of
Poisson's equation is similar to that of 2D case. Unknown
potential function is represented as Fourier series:

Uijk  = 1
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 ∑
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similar for space charge expansion. After substitution of
Fourier expansion (16) into Poisson's equation (14),
coefficients of space charge and potential expansion are
connected by algebraic relationship:

Umnl
(c,s)

 = 
Qmnl

(c,s)

( πn
a

)2+ (πm
b

)2+ (2πl
L

)
2

  ,                  (17)

which  gives the solution of the space charge problem.
In Table 3 results of the same test problem for

Gaussian beam, as for 2D axial-symmetric bunch, are
presented. As seen, error, ε, is in the interval of

(1.5 -5)·10-2. From results of the test problem the
computing time, required for 3D space charge simulations
on VAX Alpha computer is

t = (1.3·M + 3·N)·10-5   sec,                    (18)

where M = 1
2

 Nx·Ny·Nz is a number of grid points.

Required computing time linearly changed with number of
grid points, M,  and number of macroparticles, N , which
is typical for fast methods of space charge calculations [4].

Table 1. Results of 2D test problem in Cartesian
coordinates with random numbers
_______________________________________________
Grid               Time,      Max round-off       Error of Gauss
Nx · Ny     arbitr. unit        error                       theorem
_______________________________________________
32 x 32             0.5           2.10-4                       4.10-2

64 x 64             2.0           3.10-3                       3.10-2

128 x 128         8. 0          5.10-3                       1.10-2

256 x 256        32.0          6.10-2                       4.10-4

_______________________________________________

Table 2. Error, ε, of 2D space charge field calculation of
Gaussian bunch with σ /σz =1/4.
 ______________________________________________
 Grid                               Number of particles, N
Nr · Nz              5.103              5.104                  5.105

______________________________________________
32  x 32             7.6.10-2          7.4.10-2             7.3.10-2

64  x 64             2.9.10-2          2.6.10-2             2.5.10-2

128 x 128          1.9.10-2          1.3.10-2             1.10-2

256  x 256          2.10-3            9.4.10-3              6.7.10-3

512  x 512        2.2.10-3           8.9.10-3              5.10-3

_____________________________________________

Table 3. Error, ε, and  CPU time, t, sec, of VAX Alpha for
space charge calculation of the Gaussian beam with
σ /σz =1/4.
_____________________________________________
Grid                             Number of particles, N

                         5.103          5.104              5.105

Nx
2

·Ny·Nz         ε       t           ε        t              ε            t

_____________________________________________

16·32·64        4.8.10-2  0.5     3.5.10-2  1.6       3.5.10-2     12.0
16·32·128      4.7.10-2  0.9     3.2.10-2   2.3      3.2.10-2     16.0
32·64·64        3.7.10-2  1.6     2.1.10-2   3.1      2.0.10-2     16.0
32·64·128      3.7.10-2  3.2     1.9.10-2   4.7      1.8.10-2     20.8
32·64·256      3.8.10-2  6.5     2.0.10-2   8.7      1.8.10-2      30.5
64·128·128    3.9.10-2  13.5   1.9·10-2  15.9     1.6.10-2      37.0
64·128 ·256  4.2.10-2  28      2.0.10-2   30.6     1.6.10-2      58.0
_____________________________________________
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