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it is expectedthat after sufficient time thisenergy is

Abstract equally distributed between them. Hence:

A set of emittance blow-up formulae for proton beams is Ao? = EAXZ 2
derived. The starting point is the classical problem of the " ' (2)
emittanceincrease provoked by single transversekick,

p.e. an injection error. Thelegree of complication where o is the rms oscillation amplitude of the

gradually increases byeating sequentially thease of a ensembleand Ao its increment. Thisequation istrue for
series of random kicks, a single kick with actdemping Ax < o. Its validity has beenverified in many

and finally the case of coherent excitation. In all cases tBgperiments.
phenomenon ofdecoherence isassumed. lllustrative

experimental results will also be presented. 3 EMITTANCE GROWTH FROM A
SERIES OF RANDOM DIPOLE
1 INTRODUCTION DEFLECTIONS

Emittance preservation is an essential issue for proton This problem hasbeen treated by Hereward and
colliders and their injectors. A variety of mechanisms cabhnsen [3]. The analysis of previoparagraph remains
lead to anincrease inthe transverse bearsize. One valid when the beam is subjected to a series of kicks
particular family will bestudied inthis paper, that is the which are distributed randomly itime. Thepower of the

important family of dipole errors. Mangifferent sources noisy kicker is < AXCS/T. Many generators around the

belong_ to It injection  errors, . ;mgle or mUItIplecircumference can always be combirietb a single one
deflections for tune and chromaticity measurements

. o N .~'with the same effect. It is important to note that leam
ground motion vibrationsand all of these situations in has onechance everyum to beaffected bythe noise of
presence of a transverse feedback system with finite nqﬁg generatorHencethe increase inrms amplitude per
properties. It isclearthat thereexist many opportunities

; S turn is given by:
for growth of the beam emittanc&herefore it is very g y , 1,
important to be able to compute jredictthe emittance Ao :§<AX ) 3

growth in all of the circumstances that were mentioned. and the emittance growth rate follows:

2 EMITTANCE GROWTH FROM A

SINGLE DIPOLE DEFLECTION ao? _1{8x) e
At 2 T
This problem has been treated in an elegant way by H. a1 <AX2>

T

Hereward in[1]. In this case, as in the following, we are ®)
dealingwith a multi-particle problenand the process of
decoherence or filamentation is assumed to be active. Thatj; b5 peen assumed all alothgit o andAx aredefined
process will cause an increase in thes beam oscillation i, the same optical functions. An example is shown in
amplitudes orrms beam size. It ischaracterised by a Fig. 1.

decoherencetime 14, which takes its origin from a tune
spreaddQ (measured at the base of the tundreguency 4 COMBINED EFFECT OF SINGLE

T 20%

distribution). It can be shown [2] that , within 10% : KICK AND ACTIVE DAMPING
Lo _ 1 (1) The process that istudiednow is again a single kick
T AQ excitation of a beam. The initial displacementlig,. Due

to the filamentation the coherent signal decreases as :
whereT is the revolution period of thaccelerator. For

a kick of magnitudeix a total transverse energy Ak’ is DX(t) = Axge . (6)
available to the beam. Since the beamnsverse
movement has two degrees of freedom, angleparsition, This can also be written in another form:
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ax__Ax ) K+ Q0= (14)
dt T _ . m
An activefeedbacksystem will add asecond damping ~ WhereF is the drivingforce andm the mass of the
termt, : particle andQ =277T. The driving termcan beexpressed
as a function of a deflectiof
dAx Ax  AX AX
- =—-  ——— =—=_—_and = _t/r. 8
& 1, 1, T (1) = e (8) F. ey (15)
m 2r

The part of the amplitude that goes into the

decoherence idx,. The stimulusfis given at a frequency in thgband of

the beam. The beam response is :
dAx, DX, _y
— L=, 9) _ F/m
& 1, %] = QQ/ZAQ| (&) (16)
The integral of this yields the total amplitude not
corrected by the active feedback :

wheref(¢é) is the (complex) dispersion integral of the

DXy, = AXOL. (10) ensemble andis a normalisedrequencytaking values of
Tae 1 and -1 atthe edges ofthe frequencydistribution. The
. This uncorrepted amplitude goes intobeam size gpsolute value of(é) varies from 0.7 to 1.1 for
increase according to: reasonable distribution functions. For an elliptic
a f distribution p.e. f(§) is exactly equal to m. An
,_ 1., 1,01 0O approximation with about the sanaecuracy ashe one
Ao _EAXdC _EAXO EIEB - (A1) that wasapplied tothe computation of thedecoherence
0 1,0 time is proposed , that i§ (&) = 77, so that :

This formula illustratesvery clearly the competing
tendencies between filamentation and active damping.

5 EMITTANCE GROWTH DUE TO

COHERENT EXCITATION It should berecalledthat Ax is restricted tothe [
spectrum of the beam. Both andAx can be taken at a
The basic ingredient of the excitation is a series @fngle frequency or asms values if the full B-band is
kicks. Theyarrive once perturn modulated asthe 3 involved. In a previous paragraph the blow-up of tleam
oscillation. This case has been studied by Hereward [4]. size was computed for aexcitation by white noise.
Assume noisgoowerthat covers one revolutioband of
It may be enlightening tderivethe emittance growth frequency.The power is<Ax?>. The revolution band
in two different ways. contains twoB-bands,one slowwaveandone fastwave.
The power that goes in the two bands is:

nF/m _ ¢ (BB  Ax
QQ2AQ 2QQAQ 2AQ 2AQ°

A7)

X =

a) This derivation isbased orthe well knownfact
that a stablecoherent stimulation makes thebeam AX2 = 2AQ<Ax2> (18)
oscillate with anequally stable coherent amplitude which
is called X. For a single kick the signalecoheredike
T4 The power of the signal wildecoheretwice asfast ) )
like T,J2. The power of the signal thdisappears in the _, _28Q(Ax%) _ (Ax?) 2\ — oA(2

a > PC _ : X* = = , and (Ax?) = 2AQx°. (19)
decoherencewill increasethe beam size. The beasize 4NQ? 2AQ
increase per turn follows in a straightforward manner:

and also:

The blow-up rate for<Ax®> has beencomputed

=2 2 g2 .
pAo? =X 2T g B9 X a0 (12) before:
Ty AT
followed by the growth rate : Y X°0Q _ 1 AX/AQ 20
T 0> 4T o? (20)
= 1500 1
T o? (13) The result isidentical tothe one that wafund with

the exponentialdecay approach. Note that theterm

b) The starting point of thisderivation is the AX]/AQ is nothing else but thgnormalised) power
equation of motion : density of the exciter in @side-band.
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6 EMITTANCE BLOW-UP FROM [4] H. Hereward,“The Elementary Theory ofandau

RESIDUAL COHERENT Damping”, CERN 65-20, 1965.
OSCILLATION IN THE [5] D. Méhl, “Stochastic Coolingfor Beginners”,
PRESENCE OF TRANSVERSE CERN 84-15,1984.
FEEDBACK
Ae=4y AG/B

This is a speciatase ofthe previous one. Consider a

feedback system withelectronicgain g and atthe input 0™ ©

white noise with power densitgix? /df in position units. 10

The noise power in one revolution frequency band is: from Computed/
8 growth rate

2 = d_sz] ZAQand 2 ¢ g

- Xe=—n = (21)
daf T df 2AQT
The growth rate follows from (20): 6 |-
dx? /df )g?
N ) e | .L

212 o?

If the feedbackoop is closedwith the condition that
0/20Q >1, i.e. the loopreducesthe noise efficiently,

then, for a pure analog system with a bandwitith

cirdes : measured
increase of emittance

0 l ! 1 ! ] ) 1
LW (dx/drf)(2aQ)° 1020 30 <0 S0 e 70 80
T o7 o2 . (23) excitation in seconds

Figure 1 : Blow-up of emittance in th8PS collider.

Ae =y 4Ac?/B, wherey is the relativistic factor and

Bthe optical Twisparameter at the azimuth of the
In a digital system quantizationoise is ingeneral €mittance measurement.

dominant. If this is the only excitation present in the

beam previous formula remains valid with the

N 2 /et = 2 i - 5@4BY_FS 1@dB/DIV
substitution: W(dxn/df) N, /12, where A, is the CH mMKRl 9By PSev, eHz

The same formulaan bederived when startingfrom
the theory of stochastic cooling[5].

quantizationreferred tothe input of the system. On the
other hand, a beam that &xcited (instability, ground
vibrations) will oscillate up to the limit of the
gquantization. A persistertoherentoscillation amplitude
is set up with amplituded,/v12 and the growth rate
becomes :

a1 (8%,/12)aQ

= &
T o] “@ A. W\\ N
An example of such a coherent oscillation is shown in \M!M W‘“W JNMMMMWHW

Fig. 2. The measured blow-up was in agreement with the
formula.
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