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Abstract order eleven. For every magnet, each multipolar compo-

The problem of long-term losses in hadron colliders sucﬂent IS detgrm_meq using a random number ge.nelrator with
as the Large Hadron Collider (LHC) is considered. A predaussian distribution, truncated at 3 r.m.s. deviations. The
vious formula that provides the reduction of dynamic apeéelegted real|sat|on50f the random imperfections has a_dy-
ture with the number of turns is generalized to include alsgamic aperture at0® wrns c_Iose to the average value in
the relevant cases of off-momentum and tune ripple. Th set of 64. random realisations. A se_t of sgxtupoles_and
dynamic aperture turns out to shrink with a power of the i _ecapole_s_ is used .t(.) correct the non-linear imperfections.
verse logarithm of the number of turns. Long-term trackin"gWo add|t|0qql .fam|I|es of s_extupoles_ are used fo correct
data of the LHC are analysed in this framework. The for-he phromgt!0|t|es. To-part|ally _takg Into account-the op-
mula proves to hold in all cases, and the possibility of usin§rat|onal difficulty of this correction in a real machine, we

its extrapolation to predict long-term losses are explored. _eC|de_d, someh_ow arbitrarily, to sgt = 2. We disregard
linear imperfections.

The tune modulation is obtained by summing up seven
1 INTRODUCTION sine-waves, with the same frequendigsand amplitudes

In this paper we analyse the long-term stability in largér observed in the SPS spectrum (see Table 1). The am-

hadron accelerators. In the LHC [1], one has to estimafditudee; of the main frequency is set t~*, and all the

the stability for at least07 turns, corresponding to the in- @mplitudese;, are varied by a multiplicative factar that

jection plateau before energy ramping. Long-term stabilitj@nges froml to 8. The horizontal and the vertical tunes

is determined by intricate relations between nonlinearitiegre affected by a synchrotron modulation of the same order

resonances, and tune dependence on amplitude and ibmagnitude (i.e.Ap/p = 10~%).

mentum; its evaluation cannot be worked out analytically,

and is based on tracking codes. The resulting particle losses

may also occur after many millions of turns [2, 3, 4, 5, 6, 7]. k QO €

Long-term losses are drastically enhanced if the betatron

tune is modulated by some external causes, such as the

power supply ripple, or by synchro-betatron coupling, via 1 27 /868.12 1.000 - 10—%

the residual uncompensated chromaticity [6, 7, 8, 9]. For 2 20, 0.218 -10~4

a realistic model of the LHC lattice, simulations uplief 3 30, 0.708 - 10~ 4

turns are very onerous. 4 60, 0.254 - 104
A pragmatic approach is based on plotting survival times 5 70 0.100 - 10—4

provided by tracking at0> — 10¢ turns versus the ini- 6 109, 0.078 - 10~4

tial amplitude (survival plots [2, 3, 5, 7]). In a previ- 7 120, 0.218-10~4

ous paper [5] we shown for the purely four-dimensional

case that if the initial amplitude is averaged over the phase
space [10], survival plots can be interpolated by a twotaple 1. Parameters of the tune modulation frequencies
parameter formula. Here we review the results of analysing

realistic models of the LHC also in presence of tune mod-3 DYNAMIC APERTURE EVALUATION
ulation. It turns out that the dynamic aperture is well inter-

polated by the three parameters formula: In a previous work [10] we have proposed a definition of
B dynamic apertureD(N) as a function of the number of
D(N)=A+ N (1) turnsN as the first amplitude where particle loss occurs be-
0g

fore N turns, averaged over the phase space. Particles are

In the followings, we discuss the validity and the dynamica$tarted along a 2D polar grig, 6) in the coordinate space
model underlying the above formula, and we extrapolate f = £ cos6, y = psin: with respect to the approach used

to predict long-term stability. in several long-term simulations (see for instance [2, 4]),
where a fixed value of is considered in order to speed
2 LHC MODEL up simulations, this definition provides a smoother depen-

dence ofD on IV, thus allowing to derive interpolating for-
The lattice of the LHC is described in Ref. [11]. The field-mulae and to extrapolate them to predict long-term particle
shape errors are described by thin-lens multipoles up toss. An error estimate due to the finite-size grid used to
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start initial conditions can be worked out (see Ref. [7] foexponent is determined withird.5 — 1.0. The errors on
more details); this estimate is crucial to determine the relid andB become larger when the modulation is increased:
ability of the fit. A, that denotes the extrapolation of the dynamic aperture
for infinite number of turns wher is positive, is rather
4 DYNAMIC APERTURE PREDICTION sharply defined foe = 0, but becomes rather loose when
) ] e is increased. When change sign in the interval 0%
We propose to interpolate the long-term dynamic apertuggnfidence level (i.es = 1), it becomes impossible to as-
D(N) versus the number of turn§ according to the fol-  gocjate an error tol and B since our formula contains a

lowing empirical formula: singularity forx = 0.
B
D(N)=A+ g™ N 2

This equation can be justified [5] for a four dimensional . 5 X2 K A
mapping in terms of the KAM (Kolmogorov-Arnol'd-
Moser) and of the Nekhoroshev theorems, using a phase
space model that features two regions: an inner KAM da- o 0 0.4 1.9711 12.0193
main where almost all the initial conditions give rise to reg-
ular orbits, stable for infinite times, and an outer chaoti¢ 1 1.0 0.811:0 9.6
region where particles diffuse according to the Nekhoro- '
shev exponential estimate. Numerical simulations based 4 1 14 0_3+(1).g 3.4
on long-term tracking and frequency analysis have con- T
firmed this scenario for 4D mappings [5]. In the case of » 1 20 _0.110:9 49
tune modulation, this theoretical justification does not holg —08
any more. Nevertheless, we used the above formula to in- , 1 1.0 _0.17038 47
terpolate tracking data, with good results. ' TooT

The fitting procedure has been carried out using the stan- 8 1 1.3 _(.910:5 33
dard approach based on least-squares minimization. Some ' 05

care has to be taken since the fit is nonlinear. The proce
dures used to work out the confidence limits for the three o

parameters!, B andx are described in [7]. The extrapola- 18Pl 2. Main fitting parameters of Eq. (2) for the LHC
tion is carried out by using the best parameters; the error is = ”6;
obtained by extrapolating through all the parameters inside
the confidence limits, and selecting the maximum and the
minimum extrapolation value. 10%

5 NUMERICAL RESULTS

The dynamic aperture is given imm normalized at
Bmaz = 182m. Onerous simulations were carried out up
to 10° turns, with a scan over 17 angles and 100 steps in
the radius. The relative error in the dynamic aperture is of
the order oR2%.

We interpolated the dynamic aperture versus the num-
ber of turns according to Eqg. (2). The value yf, and
of the parameters and A, with the error estimated with Figure 1: Dynamic apertur® versus nDu(r:;gér of turns
a confidence level d90%, are given in Table 2. The dy- »; for the LHC on momentum, without modulation &
namic aperture estimate through tracking with the assogiy Tracking data (error bars), interpolation according
ated errors (bars), the best fit through Eq. (2) (solid line} Eq. (2) (solid line) and extrapolation at infinity (ver-

and the extrapolation to infinity (dotted line) are shown i dgotted line), prediction through Lyapunov exponent
Figs. 1-3 for three different cases. The off momentum i%squares).

Ap/p =610

The interpolation is very good: the best fit hagZathat
ranges fron.4 to 2.0. Bothx and A decrease as the mod- We use tracking data fro0? up to 10°, to evaluate the
ulational amplitude gets larger: the effect of the modula-three parameters of Eq. (2), and then we extrapolatéSat
tion is to shrink the stable core and to slow down the escafée results (see Table 3) are good: all the extrapolations
rate of the initial conditions in the outer region. koe 1, are in agreement with direct tracking, and rather precise
A becomes negative and therefore according to the extra@vithin 5%); there are some indirect indications that data
olation all initial conditions will be lost sooner or later. Theup to 10° can be safely extrapolated &7, even though
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= very hard to extract quantitative information on the long-
term stability.
10°%
€ 0 Extrap. Track.
wo“z—
0 0 12.3%9% 12.3102
103 0 1 117194 115793
1 1 114704 111752
Wozo‘ B B “w‘o‘ SIS
D (rmm) 2 1 111753 10.7752
Figure 2: Dynamic apertur® versus number of turng’
for the LHC off momentum{ = 1), without modulation 4 1 106702 10.4703
(e = 0). Tracking data (error bars), interpolation accord-
ing to Eq. (2) (solid line) and extrapolation at infinity (ver- 8 1 10.079-2 10.1793
tical dotted line), prediction through Lyapunov exponent
(squares).
_ o5 Table 3. Comparison between extrapolation of dynamic

aperture at0°® and tracking for the LHC

6 CONCLUSIONS

We have proposed an empirical formula to analyse survival
plots. Using a definition of dynamic aperture that involves
averages in phase space, the dynamic aperture turns out to
shrink with an inverse power of the logarithm of the num-
ber of turns. This numerical evidence confirms a scenario
that features a hard core of phase space stable for infinite
times and an outer chaotic region where the escape rate can
be evaluated. When modulation is added, one reaches a
limit where all the phase space becomes unstable. Besides

D (mm) giving a phenomenological framework to interpret tracking
Figure 3: Dynamic apertur® versus number of turnd’  qata, this formula allows one to extrapolate the dynamic
for the LHC off momentum{ = 1), with modulation aperture of at least one order of magnitude in the number
(e = 2). Tracking data (error bars), interpolation accordpf turns to predict long-term stability.

ing to Eq. (2) (solid line) and prediction through Lyapunov  \we wish to thank M. Giovannozzi for very relevant con-

exponent (squares). tributions to this work.
no direct check has been carried out for lack of computing
power (see Ref. [7] for more details). 7 REFERENCES
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