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Abstract

An approach to the envelope description of laminar
non-relativistic particle beams is presented, which
describes a new kind of equilibrium flow for strongly
space charge dominated proton beams subject to
acceleration in RF Linacs. The analysis is based on the
extension of the invariant envelope concept, recently
introduced in the field of RF photo-injectors[1], to non-
relativistic particle beams whose envelope is dominated
by coherent plasma oscillations instead of incoherent
betatron motion associated to thermal rms emittance. An
exact analytical solution of the rms envelope equation is
presented, describing both the laminar regime and the
transition to the thermal regime: the impact of this new
beam equilibrium on the design of high intensity Linacs
is discussed.

1  THE INVARIANT ENVELOPE
SOLUTION OF RMS ENVELOPE
EQUATION IN LAMINAR FLOW

The rms envelope equation for the rms sizes
(σ σ σ= =x y ) of a bunched round beam of charged
particles under smooth approximation reads[1]:
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 where p = βγ  is the normalized beam momentum,

′ = ′ =p eE mcaccγ β β2   the momentum gain rate

(assuming a constant momentum rate ′ = ′p i iγ β  , which

is obtained if E mc e pacc = ( ) ′2 β  , we obtain

p p p z= + ′0 ) and I  is the peak current in the bunch
( I ec rc0 = ). The  rms normalized emittance is εn, given

by εn x xx p xp= −2 2 2
 ( p x px = ′ ), where the

averages  are performed over the x px,( ) phase space.

The focusing gradient is given by K p p= ′Ω2 2 2  ,
where the normalized focusing frequency Ω  , for an
ideally synchronous Linac, comes out to be:
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where B  is the field amplitude of focusing solenoids,
Eacc  the accelerating gradient,ϕ0  the accelerating phase
and α = eE mc kacc

2  the normalized vector potential
amplitude of the RF field in the Linac accelerating
cavities (having a RF wave number k RF= 2π λ/ ). The
factor η / 8  represents the ponderomotive RF focusing
effect[1], η  being close to 1 for standing wave cavities
and almost vanishing for travelling wave ones (depending
on the RF field spatial harmonics). The third and fourth
terms under square root in eq.2 represent, respectively, a
second order defocusing gradient due to the particle speed
change through the cavity and a first order (Panofski-
Wenzel) RF defocusing kick imparted to non relativistic
particles crossing the cavity [2]  (note thatϕ0  is usually
negative to ensure phase stability).

A similar expression for Ω  can be found for a generic
quadrupole lattice, as extensively discussed elsewhere[2],
in which case the envelope to be considered is the secular
one, averaged over the cell to cell oscillations.

The normalized focusing frequency Ω  is a constant
whenever the solenoid field B is varied along the Linac in
such a way to correct for the variation of β , γ  and ϕ0  in
eq.2 so to compensate the first order defocusing RF kicks:
in this case the focusing is purely of second order on the
secular envelope (i.e. scaling like the square of the
accelerating gradient and like the inverse square of the
momentum). Taking as an example a Linac operated at
500 MHz, with Eacc = 5  MV/m at injection (100 MeV,

βi = 0 4.  , i .e . α = ⋅ −5 10 4 ) and Eacc = 10  MV/m at 1

GeV, with   ϕ0 20= − o , the maximum solenoid field,
which occurs at injection where the first order defocusing
effects from the RF cavities are stronger, comes out to be

B = +0 08 93 0 9 2. . Ω  , i.e.  0.8 T at Ω2 8=  .
In order to find an equilibrium solution of eq.1 under

laminar flow (i.e.  for a vanishing emittance term in
eq.1), we assume that the beam peak current in the bunch
is constant: the conditions on the longitudinal dynamics
imposed by such a constraint are extensively discussed in
ref.2, which reports the prescribed change with p  of the
accelerating phase ϕ0 . An exact particular solution, under
these conditions Ω = const  I const=  and εn = 0 ,  is:
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which is an approximate solution of eq.1 whenever the

laminarity parameter ρ ε= ( ) ′ +{ }I I ppn2 1 40
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much larger than 1. ̂σ  has been named invariant envelope
in the field of electron photoinjectors because it's the
equilibrium mode for the beam which performs emittance
correction. The merit of this exact solution is to treat non
perturbatively the effect of acceleration. Indeed, by
rewriting the normalized focusing frequency as

Ω Ω2 2
8= + ′( )η / L cp  (assuming cosϕ0 1=  for

simplicity of notation, ΩL  is the Larmor frequency in the
solenoid field) the invariant envelope reads

σ̂ η= ( ) ′ +( ) +[ ]I I p p cL2 2 80
2 2 2Ω  . This clearly

shows that equilibrium is possible even without focusing,
i . e .  for ΩL = 0 , because of the focusing due to
acceleration: this kind of focusing is completely neglected
in usual analysis based on the adiabatic damping approach
(see for instance Reiser[3] for an extensive analysis).

On the other hand, the drawback of the invariant
envelope description is the lacking of capability to
describe the transition from the laminar regime (ρ >> 1)
into the thermal regime (ρ ≤ 1), which typically occurs
whenever a beam is accelerated (see the scaling of the

laminarity parameter as 1 2/ p ) from the injector up to the
Linac exit. For a proton beam carrying 5 A peak current
in the bunch, accelerated in a Linac at 5 MV/m
accelerating gradient with a normalized emittance of 1
mm.mrad, the transition (ρ = 1) occurs at 0.6 GeV.

2  A QUASI-SOLUTION OF THE RMS
ENVELOPE EQUATION TO DESCRIBE

THE TRANSITION FROM LAMINAR
TO THERMAL FLOW

In order to join the merits of two different descriptions,
the one based on the invariant envelope concept, the other
based on the tune depression formalism and adiabatic
damping (i.e.  perturbative acceleration), we tried to
incorporate the focusing due to acceleration into Reiser's
formalism. The equilibrium beam predicted by such
description is
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which reduces to a pure thermal flow

σ ε εβth
n

p K
  *= =  for I = 0  ( β*  is the betatron

length) and to Brillouin flow σ th
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charge dominated regime (εn = 0 ).
The critical parameter in this description is defined as

tune depression ∆K ≡ + + ( )
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2  . ∆K  ranges from 0 (Brillouin flow,

purely laminar) up to 1 (thermal flow, negligible space
charge effects) and basically gives the depression of the

applied focusing gradient on the single particle betatron
motion due to collective space charge forces.

We notice that Reiser's expression for the matched
beam gives the right 1 p  behavior (adiabatic damping)
with a wrong mix of acceleration focusing and gradient
focusing: indeed, it can be rewritten as

σ ε ρ ρ=
+





′
+ +

+





′





















n

p K Kp p Kp p4

1

4 1
4

1

4
2

2 2

2

2 2

Ω Ω

which becomes, for K p p= ′( )Ω 2
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clearly revealing the mismatch in describing the
effective focusing from acceleration  (the factor 1/4 is
missing because of the adiabatic perturbative treatment of
acceleration).

Thus, we make an ansatz by just setting the correct
focusing term in Reiser's formula, i.e.
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This expression for σ  will be assumed in the
following to be a complete quasi-solution of eq.1, giving
an exact non-perturbative description of acceleration. As
shown later on, this expression is able to describe the
transition from the laminar space charge dominated (tune
depression close to zero) flow into the thermal emittance
dominated regime. Indeed, the two asymptotical behaviors
of eq.4 are
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In absence of acceleration (′ =p 0 ) σ  must be replaced
by a Brillouin flow atρ >> 1. Indeed the two flows match
automatically one into each other, as shown in ref.1.

In order to check the validity of (4) as a solution of
eq.1, first we transform eq.1 into a dimensionless space

defined by τ σ≡ ′ ( )p p I I0 02  (a normalized beam rms

spot size) and y p p≡ ( )ln 0  (a normalized momentum

gain factor (p0  is the initial beam momentum at
injection), obtaining
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Here ρ ρ0 0= =( )p p  : the complete solution σ  in

physical space transforms into

τ ρ ≡ + +
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clearly displaying the advantage of the dimensionless
space: just two free parameters are left, i.e. Ω  and the
initial value ρ0  at injection of the laminarity parameter,
instead of the 4 original ones, i.e. Ω  (the external
focusing) , ′p  (the accelerating gradient), I   (the beam
current) and εn (the beam emittance). It should also be
noted that solution τ  is an equilibrium mode for the
beam, since it is stable against weak oscillations due to
initial mismatches, as proved elsewhere [2].

A comparison between the numerical solution of eq.5
and the previously discussed analytical solutions (i.e. the
complete quasi-solution τ  , the pure laminar solution

ˆ //τ = +−e y 2 21 4 Ω , which represents the invariant
envelope transformed into the d-less space, and Reiser's d-
less solution τ R  , transformed of σ R) is shown in fig.1.
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Figure 1: comparison between numerical integration of
eq.1 (decreasing solid lines) and analytical solutions for
Ω = 1 (upper curves) and Ω = 4 (lower curves). The
initial laminarity parameter is ρ0 10= .

It is clearly shown the excellent agreement between τ
(dashed line, which is overlapped to the solid line for the

case Ω = 4) and the numerical solution, while the pure
laminar solution τ̂   (dotted line) is shown to go
unphysically down to zero. On the other hand, Reiser's d-
less τ R  (dotted dashed line) clearly displays a lacking of
focusing. The proton beam energy ranges in this case
from 20 MeV up to about 1 GeV, while he laminarity
parameter goes from 10 down to 0.1. Other checks for
relativistic electron beams at much higher peak currents
are reported elsewhere[4], showing again a very good
agreement and the general validity of this model.

It is interesting to compute the tune depression ∆K
corresponding to the solution τ  . This comes out to be

∆K = + +( )1 4 1 4ρ ρ

which becomes, for small value of ρ , i.e. across the

transition, ∆K ρ ρ→ → −
0

1 2  .

Another interesting quantity is the total phase advance
of betatron oscillations along the Linac,  defined as
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where ρ f  is the final value of the laminarity parameter,

usually small if the transition into the thermal regime has
been completed. If ρ f << 1 we have

∆ Ωψ ρρ  ln ln
f

f→ → + − ( ){ }0
21 4 2 1 4

which gives ∆ψ π= 2   for Ω = 5  and ρ f = 0 1. .

This quite small value for ∆ψ  can be an attractive
mode of operation to avoid the excitation of instabilities
in the single particle (betatron) motion, usually driven by
collective (space charge) effects giving envelope
oscillations starting from mismatches. Since the single
particle motion will accomplish just one betatron
oscillation in this case, there should be not enough time
to drive such an instability, which leads to beam halos.
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