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b.) element misalignmen#sx andAz; x and z

Absract being the transverse particle coordinates.

A new algorithm of successive orbit approximation c.) dipole tilts around the longitudinal s axgs,
have been developed for searching for availability of d.) stray dipole fieldaB,, .
large linear perturbations, i. e. field errors and All these cause linear about x and z members to
element misalignments and tilts in synchrotrong@ppear in the transvarse motion Hamiltonian-[1].
Such big perturbations often occur during the machine The quadratic part Hof the Hamiltonian

commissioning and may cause very large closed ori§iescribes betatron oscillations, as long as the linear part
distortions. The new algorithm has been applied &1 gives rise an depending on s external force. Thus

the superconducting heavy ion synchrotron Nuclotron e face an forced oscillation problem. The external
JINR-Dubna. force causes closed orbit distortions, the closed orbit

being a periodic solution of the Hamiltonian equations of
1. INTRODUCTION motion.It is the most convenient to describe the closed
) orbit in the generalized variables-[2]:
a.) azimuth

S
During the commissioning of a synchrotron ¢ = J’ ds (1)
much larger linear perturbations than the usual random 0
linear errors may occur. They are caused by
unpredictable mistakes during magnetic elements aM@ere Q is the betatron tune &) is the Twiss’s

vacuum chamber assembling and by big quadrupcnplitude function.

misalignments due to geodesic errors or local ground b.) normalized deviation:

movement. n = X (2
The main result of the big linear perturbations is B (s)

a large closed orbit distortion. Such a large orbit

distortion may cause significant beam losses. On the In this variables the equation of transverse

other hand the corrector strengths necessary to corraggtion becomes an equation of forced oscillations. In

such a highly distorted orbit could become quite largghe case of only one error kiekdeployed atp=
and even to exceed the maximum available correctg 2

power thus making the complete orbit correction? + QN = QB0 (@-W,) O

impossible. d
It follows from all this that in case of large orbit
distortions special efforts should be made to reveal the The 2t periodic solution of (3) is:

sources of this large distortions. After that the suspecteﬁ () = 3 ,c0sQ (m _| -y, |) (4)
magnetic elements should be carefully examined.

For detection of large linear perturbations weVnere:
have developed an algorithm of successive orbit 5, N Bog (5)

approximation. This algorithm is described after some ~ 2sinm Q
necessary introductory definitions. A description of a
computer code LEA realizing the algorithm along with From the superposition principle when M
computational experiments follows. errorkickse, are deployed ap, :

2. LINEAR PERTURBATIONS

M
_ _ n(e) = Y 3a,(9) ()
The linear perturbations are: =1

a.) field errors in dipoleAB = B-B, .
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where: whereq is the azimuth of the"i BPM andn? is the

orbit at this monitor obtained at the (k-1) step of the
algorithm under consideration.
a = cos T[—‘ - ‘ 7 We will distinguish between the usual random
J((p) q ¢ LIJ‘ ) 0 errorsd and the large erross which we are looking for
and which, as we have already said, are due to

3. ALGORITHM OF SUCCESSIVE extraordinary imperfections in the elements. The former
ORBIT APPROXIMATION constitute the random vector:

5 = (8,,8,,..0,) (13)
while the latter constitute the vector:
3.1. Signal to Noise Ratio. A = (Al A, LA, )T (14)

.In presence of a Ia_rge Gl one of th?n accelerators N<M as a rule. Supposing that a big error
harmonics in the sum (8) will be prevalent. It will playA exists at the'pdipole we can write:
the role of our ‘signal’. Let prevalent be the harmonics® ’
with j=Kk, i.e. the big linear error is located @t,. The a D) _ e -
remaining sum of harmonics over atkjwill constitute n = n, + A (1%)
the ‘noise’ for the fitting process. This noise is normally A = {Aij} = { cosQm - ‘(\q -y, ‘ )] (16)
distributed and its dispersion could be easily calculated.
In the case of full symmetry of the synchrotron with M . :
dipoles having field errors with a standard deviation The random variable are independent and

. i . i normally distributed § ~ N(0,D). The covariance
o(AB/B) and a large erroAB/B), in the k-th. dipole: matrix of the random vectar is:

AB
signal (T)k (8)
noise s AB R o
W 0 () K, = {D 5,]} i=1 j=IM (17

The numerical estimation of (10) shotvst in

the usual cases the signal to noise ratio is adverse t@”ﬂbeing the Kronecker’s symbol andthe dispersion of

making the revealing of the signal from t&PMs & .The probability theory says that the random vector
measurements a difficult task. R D is also normally distributed,

Tk) = .
3.2. Algorithm. n N(N, . K, ). The PDF is:
For determining of large linear perturbations the (1 60 o 6 o ) 1
following algorithm of successive orbit approximation PN+ M2 7Ny =S T
could be applied. \ (2m) |Kn| (18)
1. Zero step: 1 . o
At the beginning of the approximation process exf%‘} U o K6 ¢ -n P )Q
we set: The mean value is:
0 BPM Mo = Mo (19)
n%(e) = n®"(o) (9) and the covariance matrix:
e . K, = AK;.AT (20)
whg:g n (q'))t is the orbit measured by the beam For determining of the parametefs we will
20%'2{;”_]0”' ors. apply the Fischer's maximum likelihood method.

According to this method we should search for the

At the K" step we will approximate the curpé” maximum of the joint probability:

Y(¢) obtained at the previous (k-1) step successively by
the curves: ) (kD

_____ Py ;7 g B, ) Ol Max (o)
A,a,(9) p=1M (10

_ wheren“? are the orbit deviations in the BPNat the
A, will be the only parameter of each one of the Mk_1) step of the algorithm) andy, the unknown

O = (n Y n )T
Ty = (B,3(@).4,3(@)-A3,00) 1D (7eaTgT) ¢ (1) O~ Min @2

889



G = K” @)

3. COMPUTER CODE LEA AND
COMPUTATIONAL EXPERIMENTS

A C++ computer code named LEA (Linear

Formula (22) differ from the well-known LSQ gyor analysis) has been developed for realizing of the

criterion due to the fact that the components of t

random vectorf are correlated (see(15)).

h8escribed algorithm. The program computes also G.

Guignard’'sW-function-[3], which is another measure for

To find A, from (22) we must equal the first availability of large linear errors and the error spectrum,

derivative of the left side to zero which yields:

a, o= (24)
where:
¢ = ._Nchm[ni(k_l) COSQ”“‘PJ- ‘lIJp‘) +n'? COSQI—‘(pI—lIJp‘)
- (25)
& = Zi;ZijCOSQH—cp, -y, ‘). COS(QT[—‘(pj -y, ‘)
(26)
Let:

Po= Min[ [T G T )] @

From all the approximation curves,.a (),
p=1,2,...,M we will choose the one with the best fit:

ql - Min (28)
Let:
*, K _ ; K
p q = Mln[q;)] (29)
P
Let us denote:
K — k
q¥ = qf (30)
The optimum orbit at the"kstep of the
algorithm will be:
n“) =n(e) - &,a,(e) @
3. Exit:
Check whether:
q® < eps (32)

which allows for assessment of the error (see below).
LEA has off-line graphics.

We have carried out a large number of
computational experiments on the basis of the JINR-
Dubna superconducting heavy ion synchrotron
NUCLOTRON-[4]. Fig. 1. shows the case of a large kick
0.327 mrad AB/B=5.10°) and random errors with
o(AB/B,=5.10" in all the other dipoles. LEA reveals
unmistakablye, = 0.4 mrad.
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Figure 1. Measured and revealed
orbit.
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