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Abstract

The methods of stochastic control theory are proposed
in the context of charged-particle beam dynamics. The
stochastic dynamics that is introduced here is invariant for
time reversal and can be easily recast in the form of a
Schrödinger-like equation where Planck’s constant is re-
placed by the beam emittance. It changes a bilinear control
problem for Schr¨odinger equation in a linear control prob-
lem, then resulting more adequate to our aim. This point
of view seems to be in agreement with accelerators physics
modus operandi.

1 INTRODUCTION

The macroscopic state of a particle bunch in an accelerat-
ing machine is essentially the result of the collective in-
teraction of the particle among them as well as with the
surroundings. However, this macroscopic dynamics in-
volves both several coherent and incoherent microscopic
processes whose nature is deterministic or stochastic. The
sum of all these processes determines the above macro-
scopic state whose nature is essentially classical. For exam-
ple, coherent oscillations of the beam density that are man-
ifested through some mechanism of local correlation and
loss of statistical independence may be described by taking
into account all the interactions as a whole. Within the con-
text of the conventional descriptions of the beam dynamics,
it must be recognized that the study of statistical effects on
the dynamics of electron (positron) colliding beams with
Fokker–Planck equation for the beam density has received
a great deal of attention in literature, stimulating very much
the description of the noise sources and dissipation in par-
ticle accelerators by standard classical probabilistic tech-
niques [1],[2]. Nevertheless, approaches alternative to the
conventional ones should be mentioned for their natural ap-
plications to the descriptions of the interaction betwen the
beam as a whole and the surroundings. In particular, three
approaches are based on a quantum-like formalism which
takes into account the diffusion among the beam particles.
One of these is known as Thermal Wave Model (TWM) [3]
which assumes that the beam dynamics as whole is gov-
erned by a Schr¨odinger-like equation whose diffraction-
like term describes the thermal spreading among the elec-
tronic rays (diffusion). Another approach is based on a
stochastic quantizationala Nelsonof the beam dynamics
in a thermal bath with the environment [4]. Finally, a more
recent approach, is based on the simulation of semiclas-

sical corrections to classical dynamics by suitable classical
stochastic fluctuations with a suitably defined random kine-
matics by replacing the classical deterministic trajectories
[5]. Additionally, it is worth mentioning that recent exper-
iments on confined classical systems with special phase–
space boundary conditions seem to be well described by
a quantum–like formalism (Schr¨odinger-like equation) [6].
In this paper, we use the stochastic formalisms to intro-
duce, as a novel concept, stochastic control theory in beam
dynamics. This is done by giving the description of the sta-
bility regime for the beam, when thermal dissipative effects
are balanced on average by the RF energy pumping, and the
overall dynamics is conservative and time–reversal invari-
ant in mean. To this end, we observe that, according to the
stochastic formalism, the diffusion process describes the
effective motion at themesoscopic level(interplay of ther-
mal equilibrium, classical mechanical stability, and fun-
damental quantum noise) and therefore the diffusion co-
efficient is set to be the semiclassical unit of emittance
provided by qualitative dimensional analysis. In the next
section we model the random kinematics with a particular
class of diffusion processes, the Nelson diffusions, that are
nondissipative and time–reversal invariant [7]. This allows
us to introduce briefly the hydrodynamic equations for the
collective stochastic dynamics, and, in turn, to develop con-
trol tecniquesfor the beams. In particular, the dynamical
equations are derived via variational principle of classical
dynamics, with the only crucial difference that the kinemat-
ical rules and the dynamical quantities, such as the Action
and the Lagrangian, are now random. The stochastic vari-
ational principle formally reproduces the equations of the
Madelung fluid (hydrodynamic) representation of quantum
mechanics with Planck’s constant replaced by emittance.
In this sense, the present scheme allows us for a quantum–
like formulation equivalent to the probabilistic one.

2 STOCHASTIC DYNAMICS

The above quantum-like approaches of beam dynamics are
formulated, starting from different physical point of view,
but they have the common feature that one can model spa-
tially coherent fluctuations by a random kinematics per-
formed by some collective degree of freedomq(t) repre-
sentative of the beam. This way, the random kinematics
provides an effective description of the space–time varia-
tions of the particle beam densityρ(x, t) as it coincides
with the probability density of the diffusion process per-
formed byq(t). Then, in suitable units, the basic stochastic

1259



kinematical relation is the Ito’s stochastic differential equa-
tion [7] which, by replacingt with the time-like coordinate
s ≡ ct (c being the light speed) and̄h with the beam emit-
tanceε, becomes:

dq(s) = v+(q, s)ds+ ε
1/2dw , (1)

wherev+ is the deterministic drift. Note that the beam
emittance plays the role of diffusion coefficient, anddw
is the time increment of the standardδ–correlated Wiener
noise. We remark that Eq. (1) is equivalent to Fokker-
Planck equation.

We are concerning here with the stability regime of the
bunch oscillations that can be carried out in a cyrcular ac-
celerator. Thus, in this conditions, the bunch can be con-
sidered in a quasi-stationary state, during which the energy
lost by dissipation is regained in the RF cavities. In such
a quasi-stationary regime, the bunch dynamics is, on aver-
age, invariant for time–reversal. We can therefore define a
classicaleffectiveLagrangianL(q, q̇) of the system, where
the classical deterministic kinematics is replaced by the
random diffusive kinematics (1). The equations for the dy-
namics can then be obtained from the classical Lagrangian
by simply modifying variational principles of classical me-
chanics into stochastic variational principles.

In the present quantum-like context the analysis is quite
similar to the stochastic one [7], yielding again two cou-
pled nonlinear hydrodynamic equations, however, with the
emittance replacing Planck’s constant in the diffusion coef-
ficient, the real space bunch density replacing the quantum
mechanical probability density, and the bunch center veloc-
ity replacing the quantum mechanical probability current.
Given the stochastic differential equation (1) for the diffu-
sion processq(s) in 3D-space, in strict analogy with the
classical action in the deterministic case, we introduce the
following mean classical action[as∆s→ 0+]:

A(s0, s1; q) =

∫ s1
s0

E

[
1

2

(
∆q

∆s

)2
− V (q)

]
ds , (2)

whereE(.) denotes the conditional expectation with re-
spect to the probability densityρ, andV is the external po-
tential. Note that themean classical action(2) is suitable
for the sample paths of a diffusion process that are non dif-
ferentiable. Consequently, one has the following stochastic
variational principle [7]: under smooth variations of the
densityδρ, and of the current velocityδv, with vanishing
boundary conditions at the initial and final times, the Ac-
tion (2) is stationary,δA = 0, if and only if the current
velocityv (first-order moment of the densityρ) is the gra-
dient of some scalar fieldS(x, s) (the phase):

v = ∇S . (3)

Within the above conditions, the two coupled nonlin-
ear Lagrangian equations of motion for the densityρ and
for the current velocityv (or alternatively for the phase

S) are the following Hamilton–Jacobi–Madelung (HJM)
equation:

∂sS +
v2

2
−
ε2

2

∇2
√
ρ

√
ρ
+ V (x) = 0 , (4)

and the continuity equation:

∂sρ = −∇[ρv]. (5)

By solving equations (4) and (5) the state of the bunch
is completely determined. Note that, by introducing the
wave function in the eikonal representationΨ(q, s) =
√
ρ exp iεS, the above equations are formally equivalent to

the Schr¨odinger-like equation obtained in the three above
different approaches [3],[4],[5].

The observable structure is quite clear. The expectations
E(v) (first moment ofρ) of the three components of the
current velocityv are the average velocities of the bunch
center oscillations along the longitudinal and transverse di-
rections. The expectationsE(q) (first moments ofρ, as
well) of the three components of the processq(s) give the
average coordinate of the bunch center. The second mo-

ments∆q ≡

√
E
(
(q −E(q))2

)
of q(s) (r.m.s. of the

beam density) allow us to determine the dispersion (spread-
ing) of the bunch. In the harmonic case, these are all the
moments that are needed, and we have coherent state so-
lutions. In the anharmonic case the coupled equations of
dynamics may be used to achieve a controlled coherence:
given a desired state(ρ, v) the equations of motion (4)
and (5) can be solved for the external controlling potential
V (x, s) that realizes the desired state.

3 CONTROLLED BUNCHES

In order to have a controlled bunch motion, we must con-
trol, first of all, the motion of its center. Moreover, we
want that the form of bunch does not changes or changes
in a controlled way. To this end, we look at the following
Ehrenfest’s equations

d

ds
E(q) = E(v) (6)

and
d2

ds2
E(q) = −E(∇Φ). (7)

It is immediately seen, (see Eq.(7)), that all the moments
of ρ are involved through the mean values. It is possible,
however, to write a set of recursive equations that rules the
evolution of all moments. The equation to consider, in gen-
eral, is that for positional entropy

d

dt
E(log ρ) = −E(∇v). (8)

Now we illustrate the scheme to construct a simple con-
trolled packets . The idea is the following. If we select
a current velocity, we choose, in fact, the caracteristics of
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the motion of the center of the packet. Moreover, a choice
of current velocity selects a class of solutions of continuity
(Fokker-Planck) equation. The HJM equations become, in
this scheme, a constraint to retain time-reversal invariance,
giving us the controlling device.

Let us construct a class of controlled bunches as an ex-
ample. We need some initial conditionρ0 for probability
density, which satisfies a stationary Schr¨odinger-like equa-
tion with Φ0 as external potential. By taking the current
velocity of the following form [8]

v = E(v) +
x−E(q)

∆q

d∆q

ds
, (9)

and inserting the current velocity in continuity equation (7)
we solve in a very simple way, obtaining:

ρ(ξ) =

∫
δ(y − ξ)ρ0(y)dy , ξ =

x−E(q)

∆q
. (10)

Now, it is not difficult to see that

dE(v)

ds
x+
1

2
ξ2
d2∆q

ds2
− Φ0(ξ) + L(s) = −Φ, (11)

whereΦ0 is the external potential associated with the solu-
tion
√
ρ0 of the stationary Schr¨odinger-like equation,Φ is

the state dependent control device. By combining (9) (8),
we obtain:

E(log ρ(x, s)) = − log∆q. (12)

Consequently, the whole positional entropy comes from the
dispersion and this means that the set of recursive equations
is closed. We can write an equation for∆q, and all the
others depend from this last one. The equation is:

d2∆q

ds2
=
a

∆q3
−E(ξ∇Φ) (13)

wherea is a parameter which depends on the bunch emit-
tance. The Ehrenfest’s equation becomes for these states

d2

ds2
E(q) = −∇Φ|E(q), (14)

theclassicalone. It is, also, significant to write Ito’s equa-
tion for this class of stochastic processes:

dq(s) = E(v)ds+ νdw. (15)

They are associated, as Glauber states in quantum me-
chanics, to Wiener processes with a drift that is solution of
the classical (Eherenfest) equation (14).

4 CONCLUSIONS AND REMARKS

In this paper, a method of control theory has been proposed
on the basis of recent stochastic approach to particle beam
dynamics given in a quantum-like context. This method
seems to be in agreement with accelerators physicsmodus

operandi. In control theory, in fact, one has the configu-
rational variables of a physical system, then one chooses
a velocity field and with a suited strategy one forces the
system to have a well defined evolution. The evolution
has a cost and the minimitation of the cost is thepremium
for the system controller if he has adopted the right strat-
egy. The strategy is given by well suited laboratory de-
vices (external electromagnetic fields, the characteristics of
the accelerators, etc).The fluctuative approach to quantum-
like description, as long as it brings to hydrodynamic equa-
tions, transforms the difficult problem of control theory for
Schroedinger equation (bilinear control) to a linear control
for a couple of non-linear equations; it can then be more
appropriate to our aim.
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