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Abstract sical corrections to classical dynamics by suitable classical
ochastic fluctuations with a suitably defined random kine-
atics by replacing the classical deterministic trajectories
]. Additionally, it is worth mentioning that recent exper-

. S
The methods of stochastic control theory are proposqﬁ
in the context of charged-particle beam dynamics. Th

stochastic dynamics that is introduced here is invariant for. . .o 00" 0ed classical systems with special phase—

time "re_versal_ and can be easily recast, in the f‘””? of gpace boundary conditions seem to be well described by
Schiodinger-like equation where Planck’s constant is re; quantum—like formalism (Scbdinger-like equation) [6].

placed by the beam emittance. It changes a bilinear contrl?ll this paper, we use the stochastic formalisms to intro-

problem for Schodinger equation in a linear control prOb.'duce, as a novel concept, stochastic control theory in beam

Iefm_, then resultmbg more adequatte E[?] our ﬁ'm'tTh's rf’o'fy%namics. This is done by giving the description of the sta-
otview seems to be in agreement with accelerators physif ity regime for the beam, when thermal dissipative effects

modus operandi are balanced on average by the RF energy pumping, and the
overall dynamics is conservative and time—reversal invari-
1 INTRODUCTION ant in mean. To this end, we observe that, according to the
stochastic formalism, the diffusion process describes the
The macroscopic state of a particle bunch in an acceleraiffective motion at thenesoscopic leveinterplay of ther-
ing machine is essentially the result of the collective inma| equi“brium, classical mechanical Stabi“ty, and fun-
teraction of the particle among them as well as with thgamental quantum noise) and therefore the diffusion co-
surroundings. However, this macroscopic dynamics inefficient is set to be the semiclassical unit of emittance
volves both several coherent and incoherent microscopigovided by qualitative dimensional analysis. In the next
processes whose nature is deterministic or stochastic. Té&ction we model the random kinematics with a particular
sum of all these processes determines the above macgfsss of diffusion processes, the Nelson diffusions, that are
scopic state whose nature is essentially classical. For exapbndissipative and time—reversal invariant [7]. This allows
ple, coherent oscillations of the beam density that are mags to introduce briefly the hydrodynamic equations for the
ifested through some mechanism of local correlation angbllective stochastic dynamics, and, in turn, to develop con-
loss of statistical independence may be described by taking| tecniquesfor the beams. In particular, the dynamical
into account all the interactions as a whole. Within the cornequations are derived via variational principle of classical
text of the conventional descriptions of the beam dynamicgynamics, with the only crucial difference that the kinemat-
it must be recognized that the study of statistical effects qgal rules and the dynamical quantities, such as the Action
the dynamics of electron (positron) colliding beams withand the Lagrangian, are now random. The stochastic vari-
Fokker—Planck equation for the beam density has receiv@g@ional principle formally reproduces the equations of the
a great deal of attention in literature, stimulating very muciyiadelung fluid (hydrodynamic) representation of quantum
the description of the noise sources and dissipation in pafrechanics with Planck’s constant replaced by emittance.
ticle accelerators by standard classical probabilistic teclpn this sense, the present scheme allows us for a guantum-—
niques [1],[2]. Nevertheless, approaches alternative to thige formulation equivalent to the probabilistic one.
conventional ones should be mentioned for their natural ap-
plications to the descriptions of the interaction betwen the 2 STOCHASTIC DYNAMICS
beam as a whole and the surroundings. In particular, three
approaches are based on a quantum-like formalism whidtine above quantum-like approaches of beam dynamics are
takes into account the diffusion among the beam particlermulated, starting from different physical point of view,
One of these is known as Thermal Wave Model (TWM) [3put they have the common feature that one can model spa-
which assumes that the beam dynamics as whole is gdially coherent fluctuations by a random kinematics per-
erned by a Sclodinger-like equation whose diffraction- formed by some collective degree of freedgtn) repre-
like term describes the thermal spreading among the elesentative of the beam. This way, the random kinematics
tronic rays (diffusion). Another approach is based on provides an effective description of the space—time varia-
stochastic quantizatioala Nelsonof the beam dynamics tions of the particle beam densip(x,t) as it coincides
in a thermal bath with the environment [4]. Finally, a morewith the probability density of the diffusion process per-
recent approach, is based on the simulation of semicla®rmed byg(¢). Then, in suitable units, the basic stochastic
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kinematical relation is the Ito’s stochastic differential equas) are the following Hamilton—Jacobi—-Madelung (HIM)
tion [7] which, by replacing with the time-like coordinate equation:
s = ct (c being the light speed) aridwith the beam emit- ) 5 o2
tancee, becomes: 8.5 + v E_V VP +V(z) =0, (4)
2 2 Jp

and the continuity equation:

dq(s) = vy (g, s)ds + €'/ *dw, @)

wherewv, is the deterministic drift. Note that the beam
emittance plays the role of diffusion coefficient, adid

is the time increment of the standa¥dcorrelated Wiener By solving equations (4) and (5) the state of the bunch
noise. We remark that Eq. (1) is equivalent to Fokkeris completely determined. Note that, by introducing the
Planck equation. wave function in the eikonal representati@n(q,s) =

We are concerning here with the stability regime of the /5exp 15, the above equations are formally equivalent to
bunch oscillations that can be carried out in a cyrcular aghe Schodinger-like equation obtained in the three above
celerator. Thus, in this conditions, the bunch can be cogifferent approaches [3],[4],[5].
sidered in a quasi-stationary state, during which the energyThe observable structure is quite clear. The expectations
lost by dissipation is regained in the RF cavities. In suc@(v) (first moment ofp) of the three components of the
a quasi-stationary regime, the bunch dynamics is, on avefgrrent velocityv are the average velocities of the bunch
age, invariant for time—reversal. We can therefore define@nter oscillations along the longitudinal and transverse di-
classicaleffectiveLagrangian(q, ¢) of the system, where rections. The expectations(q) (first moments ofp, as
the classical deterministic kinematics is replaced by thgell) of the three components of the process) give the

random diffusive kinematics (1). The equations for the dyaverage coordinate of the bunch center. The second mo-
namics can then be obtained from the classical Lagrangian

by simply modifying variational principles of classical me-MentsAg = 4/ E ((‘1 - E(‘Z))2) of g(s) (rm.s. of the
chanics into stochastic variational principles. beam density) allow us to determine the dispersion (spread-
In the present quantum-like context the analysis is quitigg) of the bunch. In the harmonic case, these are all the
similar to the stochastic one [7], yielding again two coumoments that are needed, and we have coherent state so-
pled nonlinear hydrodynamic equations, however, with thgitions. In the anharmonic case the coupled equations of
emittance replacing Planck’s constant in the diffusion coeftynamics may be used to achieve a controlled coherence:
ficient, the real space bunch density replacing the quantugiven a desired statép, v) the equations of motion (4)
mechanical probability density, and the bunch center veloaend (5) can be solved for the external controlling potential
ity replacing the quantum mechanical probability currenty (z, s) that realizes the desired state.
Given the stochastic differential equation (1) for the diffu-

Osp = —V[p’U]. (5)

sion procesg(s) in 3D-space, in strict analogy with the 3 CONTROLLED BUNCHES
classical action in the deterministic case, we introduce the
following mean classical actidasAs — 07]: In order to have a controlled bunch motion, we must con-

trol, first of all, the motion of its center. Moreover, we
want that the form of bunch does not changes or changes

ds, (2) inacontrolled way. To this end, we look at the following
Ehrenfest’s equations

A(So,sl;Q):/ E

1 [/ Agq 2
e |3 (5) -ve
where E(.) denotes the conditional expectation with re- d
spect to the probability densigy andV is the external po- @E(q) = E(v) (6)
tential. Note that thenean classical actio(2) is suitable
for the sample paths of a diffusion process that are non dif" 2
ferentiable. Consequently, one has the following stochastic -
variational principle [7]: under smooth variations of the ) ds
densitysp, and of the current velocityv, with vanishing !t IS immediately seen, (see Eq.(7)), that all the moments
boundary conditions at the initial and final times, the AcOf p are involved through the mean values. It is possible,
tion (2) is stationarydA = 0, if and only if the current however, to write a set of recursive equations that rules the

velocityv (first-order moment of the densipy is the gra- evolution of all moments. The equation to consider, in gen-

E(q) = —E(V®). ()

dient of some scalar fiel(z, s) (the phase) eral, is that for positional entropy
d
v=VS . 3) 2 E(log p) = ~E(Vv). ®)

Within the above conditions, the two coupled nonlinNow we illustrate the scheme to construct a simple con-
ear Lagrangian equations of motion for the dengignd trolled packets . The idea is the following. If we select
for the current velocityv (or alternatively for the phase a current velocity, we choose, in fact, the caracteristics of
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the motion of the center of the packet. Moreover, a choicgperandi In control theory, in fact, one has the configu-
of current velocity selects a class of solutions of continuityational variables of a physical system, then one chooses
(Fokker-Planck) equation. The HIM equations become, ia velocity field and with a suited strategy one forces the
this scheme, a constraint to retain time-reversal invariancgystem to have a well defined evolution. The evolution
giving us the controlling device. has a cost and the minimitation of the cost is pinemium

Let us construct a class of controlled bunches as an efor the system controller if he has adopted the right strat-
ample. We need some initial conditigg for probability egy. The strategy is given by well suited laboratory de-
density, which satisfies a stationary Saffiriger-like equa- vices (external electromagnetic fields, the characteristics of
tion with ®, as external potential. By taking the currentthe accelerators, etc).The fluctuative approach to quantum-

velocity of the following form [8] like description, as long as it brings to hydrodynamic equa-
tions, transforms the difficult problem of control theory for

v=E(@)+ z— E(q) @’ 9) Schroedinger equation (bilinear control) to a linear control

Ag ds for a couple of non-linear equations; it can then be more

and inserting the current velocity in continuity equation (7)3ppropr|ate to our aim.
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ﬁE(Q) = =V®|g(y), (14)

S

theclassicalone. Itis, also, significant to write Ito’'s equa-
tion for this class of stochastic processes:

dq(s) = E(v)ds + vdw. (15)

They are associated, as Glauber states in quantum me-
chanics, to Wiener processes with a drift that is solution of
the classical (Eherenfest) equation (14).

4 CONCLUSIONS AND REMARKS

In this paper, a method of control theory has been proposed
on the basis of recent stochastic approach to particle beam
dynamics given in a quantum-like context. This method
seems to be in agreement with accelerators physadus
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